Clustering, a technique for the analysis of the genes, organizes the patterns into groups by the similarity of the dataset and has been used for identifying the functions of the genes in the cluster or analyzing the functions of unknown gones. Since the genes usually belong to multiple functional families, fuzzy clustering methods are more appropriate than the conventional hard clustering methods which assign a sample to a group. In this paper, a Bayesian validation method is proposed to evaluate the fuzzy partitions effectively. Bayesian validation method is a probability-based approach, selecting a fuzzy partition with the largest posterior probability given the dataset. At first, the proposed Bayesian validation method is compared to the 4 representative conventional fuzzy cluster validity measures in 4 well-known datasets where foray c-means algorithm is used. Then, we have analyzed the results of Saccharomyces cell cycle expression data evaluated by the proposed method.
Kim, Sang-Wook;Jang, Yeon-Jeong;Kim, Yun-Ho;Kim, Jin-Ho;Lee, Seung-Sun;Choi, Wan
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.4B
/
pp.646-680
/
2000
In this paper, we discuss the design and implementation of a concurrency control manager for a main memory DBMS(MMDBMS). Since an MMDBMS, unlike a disk-based DBMS, performs all of data update or retrieval operations by accessing main memory only, the portion of the cost for concurrency control in the total cost for a data update or retrieval is fairly high. Thus, the development of an efficient concurrency control manager highly accelerates the performance of the entire system. Our concurrency control manager employs the 2-phase locking protocol, and has the following characteristics. First, it adapts the partition, an allocation unit of main memory, as a locking granule, and thus, effectively adjusts the trade-off between the system concurrency and locking cost through the analysis of applications. Second, it enjoys low locking costs by maintaining the lock information directly in the partition itself. Third, it provides the latch as a mechanism for physical consistency of system data. Our latch supports both of the shared and exclusive modes, and maximizes the CPU utilization by combining the Bakery algorithm and Unix semaphore facility. Fourth, for solving the deadlock problem, it periodically examines whether a system is in a deadlock state using lock waiting information. In addition, we discuss various issues arising in development such as mutual exclusion of a transaction table, mutual exclusion of indexes and system catalogs, and realtime application supports.
In this study, a source locating technique applicable to transversely isotropic media was developed. Wave velocity anisotropy was considered based on the partition approximation method, which simply enabled AE source locating. Sets of P wave arrival time were decided by the two-step AIC algorithm and they were later used to locate the AE sources when having the least error compared with the partitioned elements. In order to validate the technique, pencil lead break test on artificial transversely isotropic mortar specimen was carried out. Defining the absolute error as the distance between the pencil lead break point and the located point, 1.60 mm ~ 14.46 mm of range and 8.57 mm of average were estimated therefore it was regarded as thought to be 'acceptable' considering the size of the specimen and the AE sensors. Comparing each absolute error under different threshold levels, results showed small discrepancies therefore this technique was hardly affected by background noise. Absolute error could be decomposed into each coordinate axis error and through it, effect of AE sensor position could be understood so if optimum sensor position was able to be decided, one could get more precise outcome.
KIPS Transactions on Software and Data Engineering
/
v.7
no.5
/
pp.177-188
/
2018
The scale of graph data has been increased rapidly because of the growth of mobile Internet applications and the proliferation of social network services. This brings upon the imminent necessity of efficient distributed and parallel graph processing approach since the size of these large-scale graphs are easily over a capacity of a single machine. Currently, there are two popular parallel graph processing approaches, vertex-centric graph processing and block centric processing. While a vertex-centric graph processing approach can easily be applied to the parallel processing system, a block-centric graph processing approach is proposed to compensate the drawbacks of the vertex-centric approach. In these systems, the initial quality of graph partition affects to the overall performance significantly. However, it is a very difficult problem to divide the graph into optimal states at the initial phase. Thus, several dynamic load balancing techniques have been studied that suggest the progressive partitioning during the graph processing time. In this paper, we present a load balancing algorithms for the block-centric graph processing approach where most of dynamic load balancing techniques are focused on vertex-centric systems. Our proposed algorithm focus on an improvement of the graph partition quality by dynamically reassigning blocks in runtime, and suggests block split strategy for escaping local optimum solution.
Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.
Kim, Bosung;Kim, Jinsu;Choi, Dojin;Kim, Sangsoo;Song, Seokil
The Journal of the Korea Contents Association
/
v.16
no.10
/
pp.608-616
/
2016
The Smith-Watrman (SW) algorithm is a local alignment algorithm which is one of important operations in DNA sequence analysis. The SW algorithm finds the optimal local alignment with respect to the scoring system being used, but it has a problem to demand long execution time. To solve the problem of SW, some methods to perform SW in distributed and parallel manner have been proposed. The ADAM which is a distributed and parallel processing framework for DNA sequence has parallel SW. However, the parallel SW of the ADAM does not consider that the SW is a dynamic programming method, so the parallel SW of the ADAM has the limit of its performance. In this paper, we propose a method to enhance the parallel SW of ADAM. The proposed parallel SW (PSW) is performed in two phases. In the first phase, the PSW splits a DNA sequence into the number of partitions and assigns them to multiple nodes. Then, the original Smith-Waterman algorithm is performed in parallel at each node. In the second phase, the PSW estimates the portion of data sequence that should be recalculated, and the recalculation is performed on the portions in parallel at each node. In the experiment, we compare the proposed PSW to the parallel SW of the ADAM to show the superiority of the PSW.
Ha, Rim;Nam, Gibeom;Park, Sanghyun;Kang, Taegu;Shin, Hyunjoo;Kim, Kyunghyun;Rhew, Doughee;Lee, Hyuk
Korean Journal of Remote Sensing
/
v.33
no.2
/
pp.111-123
/
2017
The phycocyanin pigment (PC) is a marker for cyanobacterial presence in eutrophic inland water. Accurate estimation of low PC concentration in turbid inland water is challenging due to the optical complexity and criticalforissuing an early warning of potentialrisks of cyanobacterial bloom to the public. To monitor cyanobacterial bloom in eutrophic inland waters, an approach is proposed to partition non-water absorption coefficient from measured reflectance and to retrieve absorption coefficient of PC with the aim of improving the accuracy in remotely estimated PC, in particular for low concentrations. The proposed inversion model retrieves absorption spectra of PC ($a_{pc}({\lambda})$) with $R^2{\geq}0.8$ for $a_{pc}(620)$. The algorithm achieved more accurate Chl-a and PC estimation with $0.71{\leq}R^2{\leq}0.85$, relative root mean square error (rRMSE) ${\leq}39.4%$ and mean relative error(RE) ${\leq}78.0%$ than the widely used semi-empirical algorithm for the same dataset. In particular, low PC ($PC{\leq}50mg/m^3$) and low PC: Chl-a ratio values of for all datasets used in this study were well predicted by the proposed algorithm.
Fuzzy modeling is generally using the given data and the fuzzy rules are established by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is presented by selection of the input variables, the number of space division and membership functions and in this paper the consequent part of the fuzzy rule is identified by polynomial functions in the form of linear inference and modified quadratic. Parameter identification in the premise part devides input space Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. In this paper, membership function of the premise part is dividing input space by using trapezoid-type membership function and by using gas furnace process which is widely used in nonlinear process we evaluate the performance.
The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.6C
/
pp.834-841
/
2004
There can be lips transformed geometrically in the lip images according to the location or the pose of camera and speaker. This transformation of the lip images changes geometric information of original lip phases. Therefore, for enhancing global lip information by using partial information of lips to correct lip phases transformed geometrically, in this paper we propose a method that can geometrically correct lips. The method is composed of two steps - the feature-deciding step and the correcting step. In the former, it is for us to extract key points and features of source image according to the its lip model and to create that of target image according to the its lip model. In the latter, we decide mapping relation after partition a source and target image based on information extracted in the previous step into each 4 regions. and then, after mapping, we unite corrected sub-images to a result image. As experiment image, we use fames that contain pronunciation on short vowels of the Korean language and use lip symmetry for evaluating the proposed algorithm. In experiment result, the correcting rate of the lower lip than the upper lip and that of lips moving largely than little was highly enhanced.
In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.