• Title/Summary/Keyword: Algorithm fusion

Search Result 653, Processing Time 0.028 seconds

An Improved Multi-resolution image fusion framework using image enhancement technique

  • Jhee, Hojin;Jang, Chulhee;Jin, Sanghun;Hong, Yonghee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.69-77
    • /
    • 2017
  • This paper represents a novel framework for multi-scale image fusion. Multi-scale Kalman Smoothing (MKS) algorithm with quad-tree structure can provide a powerful multi-resolution image fusion scheme by employing Markov property. In general, such approach provides outstanding image fusion performance in terms of accuracy and efficiency, however, quad-tree based method is often limited to be applied in certain applications due to its stair-like covariance structure, resulting in unrealistic blocky artifacts at the fusion result where finest scale data are void or missed. To mitigate this structural artifact, in this paper, a new scheme of multi-scale fusion framework is proposed. By employing Super Resolution (SR) technique on MKS algorithm, fine resolved measurement is generated and blended through the tree structure such that missed detail information at data missing region in fine scale image is properly inferred and the blocky artifact can be successfully suppressed at fusion result. Simulation results show that the proposed method provides significantly improved fusion results in the senses of both Root Mean Square Error (RMSE) performance and visual improvement over conventional MKS algorithm.

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

An Improved Remote Sensing Image Fusion Algorithm Based on IHS Transformation

  • Deng, Chao;Wang, Zhi-heng;Li, Xing-wang;Li, Hui-na;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1633-1649
    • /
    • 2017
  • In remote sensing image processing, the traditional fusion algorithm is based on the Intensity-Hue-Saturation (IHS) transformation. This method does not take into account the texture or spectrum information, spatial resolution and statistical information of the photos adequately, which leads to spectrum distortion of the image. Although traditional solutions in such application combine manifold methods, the fusion procedure is rather complicated and not suitable for practical operation. In this paper, an improved IHS transformation fusion algorithm based on the local variance weighting scheme is proposed for remote sensing images. In our proposal, firstly, the local variance of the SPOT (which comes from French "Systeme Probatoire d'Observation dela Tarre" and means "earth observing system") image is calculated by using different sliding windows. The optimal window size is then selected with the images being normalized with the optimal window local variance. Secondly, the power exponent is chosen as the mapping function, and the local variance is used to obtain the weight of the I component and match SPOT images. Then we obtain the I' component with the weight, the I component and the matched SPOT images. Finally, the final fusion image is obtained by the inverse Intensity-Hue-Saturation transformation of the I', H and S components. The proposed algorithm has been tested and compared with some other image fusion methods well known in the literature. Simulation result indicates that the proposed algorithm could obtain a superior fused image based on quantitative fusion evaluation indices.

Comparison of Fusion Methods for Generating 250m MODIS Image

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.305-316
    • /
    • 2010
  • The MODerate Resolution Imaging Spectroradiometer (MODIS) sensor has 36 bands at 250m, 500m, 1km spatial resolution. However, 500m or 1km MODIS data exhibits a few limitations when low resolution data is applied at small areas that possess complex land cover types. In this study, we produce seven 250m spectral bands by fusing two MODIS 250m bands into five 500m bands. In order to recommend the best fusion method by which one acquires MODIS data, we compare seven fusion methods including the Brovey transform, principle components algorithm (PCA) fusion method, the Gram-Schmidt fusion method, the least mean and variance matching method, the least square fusion method, the discrete wavelet fusion method, and the wavelet-PCA fusion method. Results of the above fusion methods are compared using various evaluation indicators such as correlation, relative difference of mean, relative variation, deviation index, peak signal-to-noise ratio index and universal image quality index, as well as visual interpretation method. Among various fusion methods, the local mean and variance matching method provides the best fusion result for the visual interpretation and the evaluation indicators. The fusion algorithm of 250m MODIS data may be used to effectively improve the accuracy of various MODIS land products.

Study of Sensor Fusion for Attitude Control of a Quad-rotor (쿼드로터 자세제어를 위한 센서융합 연구)

  • Yu, Dong-Hyeon;Lim, Dae Young;Sel, Nam O;Park, Jong Ho;Chong, Kil to
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.453-458
    • /
    • 2015
  • We presented a quad-rotor controlling algorithm design by using sensor fusion in this paper. The controller design technique was performed by a PD controller with a Kalman filter and compensation algorithm for increasing the stability and reliability of the quad-rotor attitude. In this paper, we propose an attitude estimation algorithm for quad-rotor based sensor fusion by using the Kalman filter. For this reason, firstly, we studied the platform configuration and principle of the quad-rotor. Secondly, the bias errors of a gyro sensor, acceleration and geomagnetic sensor are compensated. The measured values of each sensor are then fused via a Kalman filter. Finally, the performance of the proposed algorithm is evaluated through experimental data of attitude estimation. As a result, the proposed sensor fusion algorithm showed superior attitude estimation performance, and also proved that robust attitude estimation is possible even in disturbance.

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

Modified a'trous Algorithm based Wavelet Pan-sharpening Method Using IKONOS Image (IKONOS 영상을 이용한 수정된 a'trous 알고리즘 기반 웨이블릿 영상융합 기법)

  • Kim, Yong Hyun;Choi, Jae Wan;Kim, Hye Jin;Kim, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.305-309
    • /
    • 2009
  • The object of image fusion is to integrate information from multiple images as the same scene. In the satellite image fusion, many image fusion methods have been proposed for combining a high resolution panchromatic(PAN) image with low resolution multispectral(MS) images and it is very important to preserve both the spatial detail and the spectral information of fusion result. The image fusion method using wavelet transform shows good result compared with other fusion methods in preserving spectral information. This study proposes a modified a'trous algorithm based wavelet image fusion method using IKONOS image. Based on the result of experiment using IKONOS image, we confirmed that proposed method was more effective in preserving spatial detail and spectral information than existing fusion methods using a'trous algorithm.

A Study on Multi Sensor Track Fusion Algorithm for Naval Combat System (함정 전투체계 표적 융합 정확도 향상을 위한 알고리즘 연구)

  • Jung, Young-Ran
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.34-42
    • /
    • 2007
  • It is very important for the combat system to process extensive data exactly at short time for the better situation awareness compared with the threats in these days. This paper suggests to add radial velocity on the decision factor of sensor data fusion in the existing algorithm for the accuracy enhancement of the sensor data fusion in the combat system.

Implementation of a Real-time Data fusion Algorithm for Flight Test Computer (비행시험통제컴퓨터용 실시간 데이터 융합 알고리듬의 구현)

  • Lee, Yong-Jae;Won, Jong-Hoon;Lee, Ja-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.24-31
    • /
    • 2005
  • This paper presents an implementation of a real-time multi-sensor data fusion algorithm for Flight Test Computer. The sensor data consist of positional information of the target from a radar, a GPS receiver and an INS. The data fusion algorithm is designed by the 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad measurements and sensor faults. The statistical parameters for the states are obtained from Monte Carlo simulations and covariance analysis using test tracking data. The designed filter is verified by using real data both in post processing and real-time processing.

A HDR Algorithm for Single Image Based on Exposure Fusion Using Variable Gamma Coefficient (가변적 감마 계수를 이용한 노출융합기반 단일영상 HDR기법)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1059-1067
    • /
    • 2021
  • In this paper, a HDR algorithm for a single image is proposed using the exposure fusion, that adaptively calculates gamma correction coefficients according to the image distribution. Since typical HDR methods should use at least three images with different exposure values at the same scene, the main problem was that they could not be applied at the single shot image. Thus, HDR enhancements based on a single image using tone mapping and histogram modifications were recently presented, but these created some location-specific noises due to improper corrections. Therefore, the proposed algorithm calculates proper gamma coefficients according to the distribution of the input image and generates different exposure images which are corrected by the dark and the bright region stretching. A HDR image reproduction controlling exposure fusion weights among the gamma corrected and the original pixels is presented. As the result, the proposed algorithm can reduce certain noises at both the flat and the edge areas and obtain subjectively superior image quality to that of conventional methods.