• Title/Summary/Keyword: Algorithm decomposition

Search Result 789, Processing Time 0.028 seconds

Feature Map Based Complete Coverage Algorithm for a Robotic Vacuum Cleaner (청소 로봇을 위한 특징점 맵 기반의 전 영역 청소 알고리즘)

  • Baek, Sang-Hoon;Lee, Tae-Kyeong;Oh, Se-Young;Ju, Kwang-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • The coverage ability is one of essential techniques for the Robotic Vacuum Cleaner (RVC). Most of the RVCs rely on random or regular pattern movement to cover a target space due to the technical difficulties to implement localization and map and constraints of hardwares such as controller and sensors. In this paper, we consider two main issues which are low computational load and using sensors with very limited sensing capabilities. First, in our approach, computing procedures to build map and detect the RVC's position are minimized by simplifying data obtained from sensors. To reduce computational load, it needs simply presenting an environment with objects of various shapes. Another isuue mentioned above is regarded as one of the most important problems in our approach, because we consider that many RVCs use low-cost sensor systems such as an infrared sensor or ultrasonic sensor with limited capabilities in limited range, detection uncertainty, measurement noise, etc. Methods presented in this paper are able to apply to general RVCs equipped with these sensors. By both simulation and real experiment, we evaluate our method and verify that the proposed method guarantees a complete coverage.

Software Development for Dynamic Positron Emission Tomography : Dynamic Image Analysis (DIA) Tool (동적 양전자방출단층 영상 분석을 위한 소프트웨어 개발: DIA Tool)

  • Pyeon, Do-Yeong;Kim, Jung-Su;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.369-376
    • /
    • 2016
  • Positron Emission Tomography(PET) is nuclear medical tests which is a combination of several compounds with a radioactive isotope that can be injected into body to quantitatively measure the metabolic rate (in the body). Especially, Phenomena that increase (sing) glucose metabolism in cancer tissue using the $^{18}F$-FDG (Fluorodeoxyglucose) is utilized widely in cancer diagnosis. And then, Numerous studies have been reported that incidence seems high availability even in the modern diagnosis of dementia and Parkinson's (disease) in brain disease. When using a dynamic PET iamge including the time information in the static information that is provided for the diagnosis many can increase the accuracy of diagnosis. For this reason, clinical researchers getting great attention but, it is the lack of tools to conduct research. And, it interfered complex mathematical algorithm and programming skills for activation of research. In this study, in order to easy to use and enable research dPET, we developed the software based graphic user interface(GUI). In the future, by many clinical researcher using DIA-Tool is expected to be of great help to dPET research.

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.

Face Detection Using A Selectively Attentional Hough Transform and Neural Network (선택적 주의집중 Hough 변환과 신경망을 이용한 얼굴 검출)

  • Choi, Il;Seo, Jung-Ik;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.93-101
    • /
    • 2004
  • A face boundary can be approximated by an ellipse with five-dimensional parameters. This property allows an ellipse detection algorithm to be adapted to detecting faces. However, the construction of a huge five-dimensional parameter space for a Hough transform is quite unpractical. Accordingly, we Propose a selectively attentional Hough transform method for detecting faces from a symmetric contour in an image. The idea is based on the use of a constant aspect ratio for a face, gradient information, and scan-line-based orientation decomposition, thereby allowing a 5-dimensional problem to be decomposed into a two-dimensional one to compute a center with a specific orientation and an one-dimensional one to estimate a short axis. In addition, a two-point selection constraint using geometric and gradient information is also employed to increase the speed and cope with a cluttered background. After detecting candidate face regions using the proposed Hough transform, a multi-layer perceptron verifier is adopted to reject false positives. The proposed method was found to be relatively fast and promising.

Ex Vivo MR Diffusion Coefficient Measurement of Human Gastric Tissue (인체의 위 조직 시료에서 자기공명영상장치를 이용한 확산계수 측정에 대한 기초 연구)

  • Mun Chi-Woong;Choi, Ki-Sueng;Nana Roger;Hu, Xiaoping P.;Yang, Young-Il;Chang Hee-Kyung;Eun, Choong-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.203-209
    • /
    • 2006
  • The aim of this study is to investigate the feasibility of ex vivo MR diffusion tensor imaging technique in order to observe the diffusion-contrast characteristics of human gastric tissues. On normal and pathologic gastric tissues, which have been fixed in a polycarbonate plastic tube filled with 10% formalin solution, laboratory made 3D diffusion tensor Turbo FLASH pulse sequence was used to obtain high resolution MR images with voxel size of $0.5{\times}0.5{\times}0.5mm^3\;using\;64{\times}32{\times}32mm^3$ field of view in conjunction with an acquisition matrix of $128{\times}64{\times}64$. Diffusion weighted- gradient pulses were employed with b values of 0 and $600s/mm^2$ in 6 orientations. The sequence was implemented on a clinical 3.0-T MRI scanner(Siemens, Erlangen, Germany) with a home-made quadrature-typed birdcage Tx/Rx rf coil for small specimen. Diffusion tensor values in each pixel were calculated using linear algebra and singular value decomposition(SVD) algorithm. Apparent diffusion coefficient(ADC) and fractional anisotropy(FA) map were also obtained from diffusion tensor data to compare pixel intensities between normal and abnormal gastric tissues. The processing software was developed by authors using Visual C++(Microsoft, WA, U.S.A.) and mathematical/statistical library of GNUwin32(Free Software Foundation). This study shows that 3D diffusion tensor Turbo FLASH sequence is useful to resolve fine micro-structures of gastric tissue and both ADC and FA values in normal gastric tissue are higher than those in abnormal tissue. Authors expect that this study also represents another possibility of gastric carcinoma detection by visualizing diffusion characteristics of proton spins in the gastric tissues.

Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network (RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법)

  • NGUYEN, HUU DUNG;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.703-712
    • /
    • 2019
  • Single image Super-Resolution (SISR) aims to generate a visually pleasing high-resolution image from its degraded low-resolution measurement. In recent years, deep learning - based super - resolution methods have been actively researched and have shown more reliable and high performance. A typical method is WaveletSRNet, which restores high-resolution images through wavelet coefficient learning based on feature maps of images. However, there are two disadvantages in WaveletSRNet. One is a big processing time due to the complexity of the algorithm. The other is not to utilize feature maps efficiently when extracting input image's features. To improve this problems, we propose an efficient single image super resolution method, named RDB-WaveletSRNet. The proposed method uses the residual dense block to effectively extract low-resolution feature maps to improve single image super-resolution performance. We also adjust appropriated growth rates to solve complex computational problems. In addition, wavelet packet decomposition is used to obtain the wavelet coefficients according to the possibility of large scale ratio. In the experimental result on various images, we have proven that the proposed method has faster processing time and better image quality than the conventional methods. Experimental results have shown that the proposed method has better image quality by increasing 0.1813dB of PSNR and 1.17 times faster than the conventional method.

A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning (자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론)

  • Roh, Jeong-Min;Kim, Yongsung
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.52-62
    • /
    • 2021
  • Quality control is critical at manufacturing sites and is key to predicting the risk of quality defect before manufacturing. However, the reliability of manual quality control methods is affected by human and physical limitations because manufacturing processes vary across industries. These limitations become particularly obvious in domain areas with numerous manufacturing processes, such as the manufacture of major nuclear equipment. This study proposed a novel method for predicting the risk of quality defects by using natural language processing and machine learning. In this study, production data collected over 6 years at a factory that manufactures main equipment that is installed in nuclear power plants were used. In the preprocessing stage of text data, a mapping method was applied to the word dictionary so that domain knowledge could be appropriately reflected, and a hybrid algorithm, which combined n-gram, Term Frequency-Inverse Document Frequency, and Singular Value Decomposition, was constructed for sentence vectorization. Next, in the experiment to classify the risky processes resulting in poor quality, k-fold cross-validation was applied to categorize cases from Unigram to cumulative Trigram. Furthermore, for achieving objective experimental results, Naive Bayes and Support Vector Machine were used as classification algorithms and the maximum accuracy and F1-score of 0.7685 and 0.8641, respectively, were achieved. Thus, the proposed method is effective. The performance of the proposed method were compared and with votes of field engineers, and the results revealed that the proposed method outperformed field engineers. Thus, the method can be implemented for quality control at manufacturing sites.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.