• Title/Summary/Keyword: Algorithm Selection Process

Search Result 455, Processing Time 0.031 seconds

Modeling of Positive Selection for the Development of a Computer Immune System and a Self-Recognition Algorithm

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.453-458
    • /
    • 2003
  • The anomaly-detection algorithm based on negative selection of T cells is representative model among self-recognition methods and it has been applied to computer immune systems in recent years. In immune systems, T cells are produced through both positive and negative selection. Positive selection is the process used to determine a MHC receptor that recognizes self-molecules. Negative selection is the process used to determine an antigen receptor that recognizes antigen, or the nonself cell. In this paper, we propose a novel self-recognition algorithm based on the positive selection of T cells. We indicate the effectiveness of the proposed algorithm by change-detection simulation of some infected data obtained from cell changes and string changes in the self-file. We also compare the self-recognition algorithm based on positive selection with the anomaly-detection algorithm.

Application of Parameters-Free Adaptive Clonal Selection in Optimization of Construction Site Utilization Planning

  • Wang, Xi;Deshpande, Abhijeet S.;Dadi, Gabriel B.
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • The Clonal Selection Algorithm (CSA) is an algorithm inspired by the human immune system mechanism. In CSA, several parameters needs to be optimized by large amount of sensitivity analysis for the optimal results. They limit the accuracy of the results due to the uncertainty and subjectivity. Adaptive Clonal Selection (ACS), a modified version of CSA, is developed as an algorithm without controls by pre-defined parameters in terms of selection process and mutation strength. In this paper, we discuss the ACS in detail and present its implementation in construction site utilization planning (CSUP). When applied to a developed model published in research literature, it proves that the ACS are capable of searching the optimal layout of temporary facilities on construction site based on the result of objective function, especially when the parameterization process is considered. Although the ACS still needs some improvements, obtaining a promising result when working on a same case study computed by Genetic Algorithm and Electimze algorithm prove its potential in solving more complex construction optimization problems in the future.

Cluster Priority Selection Algorithm for Minimizing Surplus Parts in Ball Bearing Selective Assembly System (볼 베어링 선택조립 시스템에서 잉여부품 최소화를 위한 군집 우선 선택 알고리즘)

  • Shin, Kang-hyeon;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.15-17
    • /
    • 2022
  • In order to minimize surplus parts in ball bearing selective assembly systems, it is necessary to optimize the selection probability by grasping the dimensional distribution of each part. But the use of a complex system causes delays in the production process. In this paper, we propose cluster priority selection algorithm that can quickly and simply determine the selection priority in ball bearing selective assembly system. In addition, we assume the simulated situation with the data collected in the actual ball bearing selective assembly process, and evaluate the incidence of surplus part and runtime by simulating the cluster priority selection algorithm and the exiting algorithm. As a result of the simulation, the cluster priority selection algorithm generated 83.8% less surplus parts, and 39.7% less runtime than the existing algorithm.

  • PDF

A Genetic Algorithm A, pp.oach for Process Plan Selection on the CAPP (CAPP에서 공정계획 선정을 위한 유전 알고리즘 접근)

  • 문치웅;김형수;이상준
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Process planning is a very complex task and requires the dynamic informatioon of shop foor and market situations. Process plan selection is one of the main problems in the process planning. In this paper, we propose a new process plan selection model considering operation flexibility for the computer aided process planing. The model is formulated as a 0-1 integer programming considering realistic shop factors such as production volume, machining time, machine capacity, transportation time and capacity of tractors such as production volume, machining time, machine capacity, transportation time capacity of transfer device. The objective of the model is to minimize the sum of the processing and transportation time for all parts. A genetic algorithm a, pp.oach is developed to solve the model. The efficiency of the proposed a, pp.oach is verified with numerical examples.

  • PDF

Evolutionary Algorithm for Process Plan Selection with Multiple Objectives

  • MOON, Chiung;LEE, Younghae;GEN, Mitsuo
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.116-122
    • /
    • 2004
  • This paper presents a process plan selection model with multiple objectives. The process plans for all parts should be selected under multiple objective environment as follows: (1) minimizing the sum of machine processing and material handling time of all the parts considering realistic shop factors such as production volume, processing time, machine capacity, and capacity of transfer device. (2) balancing the load between machines. A multiple objective mathematical model is proposed and an evolutionary algorithm with the adaptive recombination strategy is developed to solve the model. To illustrate the efficiency of proposed approach, numerical examples are presented. The proposed approach is found to be effective in offering a set of satisfactory Pareto solutions within a satisfactory CPU time in a multiple objective environment.

Comparative Study on the Selection Algorithm of CLINAID using Fuzzy Relational Products

  • Noe, Chan-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.849-855
    • /
    • 2008
  • The Diagnostic Unit of CLINAID can infer working diagnoses for general diseases from the information provided by a user. This user-provided information in the form of signs and symptoms, however, is usually not sufficient to make a final decision on a working diagnosis. In order for the Diagnostic Unit to reach a diagnostic conclusion, it needs to select suitable clinical investigations for the patients. Because different investigations can be selected for the same patient, we need a process that can optimize the selection procedure employed by the Diagnostic Unit. This process, called a selection algorithm, must work with the fuzzy relational method because CLINAID uses fuzzy relational structures extensively for its knowledge bases and inference mechanism. In this paper we present steps of the selection algorithm along with simulation results on this algorithm using fuzzy relational products, both harsh product and mean product. The computation results of applying several different fuzzy implication operators are compared and analyzed.

Negative Selection Algorithm for DNA Pattern Classification

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.190-195
    • /
    • 2004
  • We propose a pattern classification algorithm using self-nonself discrimination principle of immune cells and apply it to DNA pattern classification problem. Pattern classification problem in bioinformatics is very important and frequent one. In this paper, we propose a classification algorithm based on the negative selection of the immune system to classify DNA patterns. The negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes ${\eta}$ groups of antigenic receptor for ${\eta}$ different patterns, these receptor groups can classify into ${\eta}$ patterns. We propose a pattern classification algorithm based on the negative selection in nucleotide base level and amino acid level. Also to show the validity of our algorithm, experimental results of RNA group classification are presented.

  • PDF

Fuzzy Logic Based Temporal Error Concealment for H.264 Video

  • Lee, Pei-Jun;Lin, Ming-Long
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.574-582
    • /
    • 2006
  • In this paper, a new error concealment algorithm is proposed for the H.264 standard. The algorithm consists of two processes. The first process uses a fuzzy logic method to select the size type of lost blocks. The motion vector of a lost block is calculated from the current frame, if the motion vectors of the neighboring blocks surrounding the lost block are discontinuous. Otherwise, the size type of the lost block can be determined from the preceding frame. The second process is an error concealment algorithm via a proposed adapted multiple-reference-frames selection for finding the lost motion vector. The adapted multiple-reference-frames selection is based on the motion estimation analysis of H.264 coding so that the number of searched frames can be reduced. Therefore the most accurate mode of the lost block can be determined with much less computation time in the selection of the lost motion vector. Experimental results show that the proposed algorithm achieves from 0.5 to 4.52 dB improvement when compared to the method in VM 9.0.

  • PDF

Model selection algorithm in Gaussian process regression for computer experiments

  • Lee, Youngsaeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.383-396
    • /
    • 2017
  • The model in our approach assumes that computer responses are a realization of a Gaussian processes superimposed on a regression model called a Gaussian process regression model (GPRM). Selecting a subset of variables or building a good reduced model in classical regression is an important process to identify variables influential to responses and for further analysis such as prediction or classification. One reason to select some variables in the prediction aspect is to prevent the over-fitting or under-fitting to data. The same reasoning and approach can be applicable to GPRM. However, only a few works on the variable selection in GPRM were done. In this paper, we propose a new algorithm to build a good prediction model among some GPRMs. It is a post-work of the algorithm that includes the Welch method suggested by previous researchers. The proposed algorithms select some non-zero regression coefficients (${\beta}^{\prime}s$) using forward and backward methods along with the Lasso guided approach. During this process, the fixed were covariance parameters (${\theta}^{\prime}s$) that were pre-selected by the Welch algorithm. We illustrated the superiority of our proposed models over the Welch method and non-selection models using four test functions and one real data example. Future extensions are also discussed.

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.