Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.
Compared to the continuously increasing dog population and industry size in Korea, systematic analysis of related data and research on breed classification methods are very insufficient. In this paper, an automatic breed classification method is proposed using deep learning technology for 14 major dog breeds domestically raised. To do this, dog images are collected for deep learning training and a dataset is built, and a breed classification algorithm is created by performing transfer learning based on VGG-16 and Resnet-34 as backbone networks. In order to check the transfer learning effect of the two models on dog images, we compared the use of pre-trained weights and the experiment of updating the weights. When fine tuning was performed based on VGG-16 backbone network, in the final model, the accuracy of Top 1 was about 89% and that of Top 3 was about 94%, respectively. The domestic dog breed classification method and data construction proposed in this paper have the potential to be used for various application purposes, such as classification of abandoned and lost dog breeds in animal protection centers or utilization in pet-feed industry.
The Journal of The Korea Institute of Intelligent Transport Systems
/
제22권3호
/
pp.1-19
/
2023
Bikes have recently emerged as an alternative to carbon neutrality. To understand the demand for public bikes, we endeavored to estimate travel frequency of public bike by considering the intermediate stops. Using the GPS trajectory data of 'Ttareungyi', a public bike service in Seoul, we identified a stay point and estimated travel frequency reflecting population, land use, and physical characteristics. Application of map matching and a stay point detection algorithm revealed that stay point appeared in about 12.1% of the total trips. Compared to a trip without stay point, the trip with stay point has a longer average travel distance and travel time and a higher occurrence rate during off-peak hours. According to visualization analysis, the stay points are mainly found in parks, leisure facilities, and business facilities. To consider the stay point, the unit of analysis was set as a hexagonal grid rather than the existing rental station base. Travel frequency considering the stay point were analyzed using the Zero-Inflated Negative Binomial (ZINB) model. Results of our analysis revealed that the travel frequency were higher in bike infrastructure where the safety of bike users was secured, such as 'Bikepath' and 'Bike and pedestrian path'. Also, public bikes play a role as first & last mile means of access to public transportation. The measure of travel frequency was also observed to increase in life and employment centers. Considering the results of this analysis, securing safety facilities and space for users should be given priority when planning any additional expansion of bike infrastructure. Moreover, there is a necessity to establish a plan to supply bike infrastructure facilities linked to public transportation, especially the subway.
This study was carried out to investigate the current trends in skiing-related research from existing literature in the field of kinematics, measurement sensor and computer simulation. In the field of kinematics, research is being conducted on the mechanism of ski turn, posture analysis according to the grade and skill level of skiers, friction force of ski and snow, and air resistance. In the field of measurement sensor and computer simulation, researches are being conducted for researching and developing equipment using IMU sensor and GPS. The results of this study are as follows. First, beyond the limits of the existing kinematic analysis, it is necessary to develop measurement equipment that can analyze the entire skiing area and can be deployed with ease at the sports scene. Second, research on the accuracy of information obtained using measurement sensors and various analysis techniques based on these measures should be carried out continuously to provide data that can help the sports scene. Third, it is necessary to use computer simulation methods to clarify the injury mechanism and discover ways to prevent injuries related to skiing. Fourth, it is necessary to provide optimized ski trajectory algorithm by developing 3D ski model using computer simulation and comparing with actual skiing data.
Seung Mo Hong;Uiseob Lee;Sung-woo Kim;Youngmoon Goh;Min-Jae Park;Chiyoung Jeong;Jungwon Kwak;Byungchul Cho
Progress in Medical Physics
/
제34권1호
/
pp.1-9
/
2023
Purpose: Although ionization chambers are widely used to measure beam commissioning data, point-by-point measurements of all the profiles with various field size and depths are time-consuming tasks. As an alternative, we investigated the feasibility of a linear diode array for commissioning a treatment planning system. Methods: The beam data of a Varian TrueBeam® radiotherapy system at 6 and 10 MV with/without a flattening filter were measured for commissioning of an Eclipse Analytical Anisotropic Algorithm (AAA) ver.15.6. All of the necessary beam data were measured using an IBA CC13 ionization chamber and validated against Varian "Golden Beam" data. After validation, the measured CC13 profiles were used for commissioning the Eclipse AAA (AAACC13). In addition, an IBA LDA-99SC linear diode array detector was used to measure all of the beam profiles and for commissioning a separate model (AAALDA99). Finally, the AAACC13 and AAALDA99 dose calculations for each of the 10 clinical plans were compared. Results: The agreement of the CC13 profiles with the Varian Golden Beam data was confirmed within 1% except in the penumbral region, where ≤2% of a discrepancy related to machine-specific jaw calibration was observed. Since the volume was larger for the CC13 chamber than for the LDA-99SC chamber, the penumbra widths were larger in the CC13 profiles, resulting in ≤5% differences. However, after beam modeling, the penumbral widths agreed within 0.1 mm. Finally the AAALDA99 and AAACC13 dose distributions agreed within 1% for all voxels inside the body for the 10 clinical plans. Conclusions: In conclusion, the LDA-99SC diode array detector was found to be accurate and efficient for measuring photon beam profiles to commission treatment planning systems.
The Journal of The Korea Institute of Intelligent Transport Systems
/
제21권1호
/
pp.105-122
/
2022
According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.
Ju-hyeon Seo;Sun-mo Yoo;Jong-hwa Park;Jin-joo Park;Tae-jin Lee
Convergence Security Journal
/
제23권2호
/
pp.47-54
/
2023
The global popularity of K-content(Korean Wave) has led to a continuous increase in copyright infringement cases involving domestic works, not only within the country but also overseas. In response to this trend, there is active research on technologies for detecting illegal distribution sites of domestic copyrighted materials, with recent studies utilizing the characteristics of domestic illegal distribution sites that often include a significant number of advertising banners. However, the application of detection techniques similar to those used domestically is limited for overseas illegal distribution sites. These sites may not include advertising banners or may have significantly fewer ads compared to domestic sites, making the application of detection technologies used domestically challenging. In this study, we propose a detection technique based on the similarity comparison of links and text trees, leveraging the characteristic of including illegal sharing posts and images of copyrighted materials in a similar hierarchical structure. Additionally, to accurately compare the similarity of large-scale trees composed of a massive number of links, we utilize Graph Neural Network (GNN). The experiments conducted in this study demonstrated a high accuracy rate of over 95% in classifying regular sites and sites involved in the illegal distribution of copyrighted materials. Applying this algorithm to automate the detection of illegal distribution sites is expected to enable swift responses to copyright infringements.
The ICAO (International civil aviation organization)recommended the implementation of the GANP (global air navigation plan) for strategic decision-making and air traffic management evaluation. In this study, we proposed a new method for finding the route distance from KPI (key performance indicator) 05 actual route extension presented for air traffic management evaluation. For this purpose, we collected trajectory data for one month and calculated the en-route distances using the methods presented in ICAO and the methods presented by this author. In the ICAO method, the intersection point must be estimated through the equation of a circle for radius 40 NM and the equation of a straight line for an inner and outer point close to a circle in the track data, and four flight distances are calculated to calculate the en-route distance. In the method presented in this study, two flight distances are calculated without estimating the intersection point to calculate the en-route distance. To determine the error between the two methods, we used the performance evaluation index RMSE (root mean square error) and the determination factor R2 of the regression model.
In the rapidly evolving domain of e-commerce, our study presents a cohesive approach to enhance customer satisfaction prediction from online reviews, aligning methodological innovation with practical insights. We integrate the RFE-SHAP feature selection with LDA topic modeling to streamline predictive analytics in e-commerce. This integration facilitates the identification of key features-specifically, narrowing down from an initial set of 28 to an optimal subset of 14 features for the Random Forest algorithm. Our approach strategically mitigates the common issue of overfitting in models with an excess of features, leading to an improved accuracy rate of 84% in our Random Forest model. Central to our analysis is the understanding that certain aspects in review content, such as quality, fit, and durability, play a pivotal role in influencing customer satisfaction, especially in the clothing sector. We delve into explaining how each of these selected features impacts customer satisfaction, providing a comprehensive view of the elements most appreciated by customers. Our research makes significant contributions in two key areas. First, it enhances predictive modeling within the realm of e-commerce analytics by introducing a streamlined, feature-centric approach. This refinement in methodology not only bolsters the accuracy of customer satisfaction predictions but also sets a new standard for handling feature selection in predictive models. Second, the study provides actionable insights for e-commerce platforms, especially those in the clothing sector. By highlighting which aspects of customer reviews-like quality, fit, and durability-most influence satisfaction, we offer a strategic direction for businesses to tailor their products and services.
Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
Journal of Korea Water Resources Association
/
제56권spc1호
/
pp.1027-1036
/
2023
Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.