• 제목/요약/키워드: Algorithm Model

검색결과 12,989건 처리시간 0.044초

비균일 진주층 모사 다층형 복합재료의 내충격성에 관한 수치해석 (Numerical Study on Impact Resistance of Nonuniform Nacre-patterned Multi-layer Structures)

  • 이태희;고권환;홍정욱
    • 한국전산구조공학회논문집
    • /
    • 제35권4호
    • /
    • pp.215-226
    • /
    • 2022
  • 우수한 역학적 성능을 가진 생물체의 구조를 모방하여 고성능의 복합재료를 개발하려는 노력이 최근 활발히 이뤄지고 있다. 진주층 구조는 구성재료 대비 월등히 높은 파괴인성을 지닌다는 점에서 촉망받는 자연 모사 구조 중 하나이다. 하지만, 진주층 모사 구조의 형상이 변형될 때 구조의 충격성능이 어떻게 달라지는지에 관한 연구는 아직 충분히 진행되지 않았다. 본 연구에서는 무작위로 변형된 진주층 모사 복합재의 수치모델을 개발하고 충격성능을 분석하였다. 먼저, 균일한 진주층 모사 패턴에서 플레이트 판의 평면 크기를 무작위로 변형하는 알고리즘을 개발하고 이를 활용하여 불균일한 진주층 패턴 모사 구조를 모델링하였다. 그 후, 낙하충격 시뮬레이션을 수행하고 해당 모델의 충격거동을 에너지 흡수율과 본 미세스 응력 분포, 충격력-시간 그래프를 활용하여 평가하였다. 수치해석결과를 바탕으로, 충돌 범위 주변 플레이트 판의 기하학적 형상이 불균일할수록 진주층 모사 구조의 내충격성이 저하됨을 입증하였다. 이러한 진주층 모사 형상에 대한 심층적인 이해는 진주층 모사 구조의 최적설계를 수립하는 데 효율적으로 활용될 수 있을 것으로 기대된다.

데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법 (CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation)

  • 심승보
    • 한국ITS학회 논문지
    • /
    • 제21권5호
    • /
    • pp.171-182
    • /
    • 2022
  • 구조물을 안전하게 관리하기 위해서는 우선적으로 건전한 유지가 전제되어야 한다. 이 같은 구조물의 건전성을 결정하는 요인 중에서 가장 대표적인 예로는 균열을 들 수 있다. 여러 가지 원인에 의해 발생하는 균열은 다양한 종류와 형태로 구조물에 손상을 입힌다. 무엇보다 이러한 균열이 방치될 경우 위험도가 증가하여 안전사고로 이어질 수 있다. 이러한 문제점을 경감하기 위하여 최근 들어 딥러닝과 컴퓨터 비전 기술을 활용하여 손상을 점검하는 방법들이 소개되고 있다. 이 같은 방법들은 대체로 충분한 양의 학습 데이터가 필요한 것이 사실이다. 하지만, 학습을 위한 영상 데이터의 충분한 확보가 어렵다는 점은 딥러닝 균열 탐지 알고리즘의 성능에 부정적인 영향을 미친다. 따라서 본 논문에서는 이에 대한 문제의식을 바탕으로 영상 변환 기법을 활용하여 균열 영상 데이터를 증강하는 방법을 제시했다. 이는 아스팔트 균열 영상을 콘크리트 균열 영상으로 변환하거나 혹은 이와 반대로 콘크리트 균열 영상을 아스팔트 균열 영상으로 변환하여 딥러닝 신경망 모델을 학습하기 위한 영상 데이터를 확보하는 방법이다. 이를 통해 학습 데이터의 다양성을 향상시켜 강건한 균열 탐지 알고리즘 개발에 기여할 수 있기를 기대한다.

금융거래 효과가 종료된 고객의 개인신용정보 파기 대상 범위 선정에 관한 연구 (A study on the selection of the target scope for destruction of personal credit information of customers whose financial transaction effect has ended)

  • 백송이;임영빈;이창길;전삼현
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.163-169
    • /
    • 2022
  • 신용정보법에 따라 신용정보 주체의 관계별 고객 정보 보호를 위해 금융거래 효과가 끝난 기간에 따라 2단계로 나눠 파기 및 분리보관하고 있다. 하지만, 금융거래 효과가 종료된 고객의 개인신용정보 파기는 금융 상품 및 거래의 성격에 따라 거래가 종료되었다고 일괄적으로 파기할 수 없는 것이 한계이다. 이를 위해 IT 업무 담당자는 사전에 거래 유형별 업무 연관관계를 조사하여 파기 대상과 순서에 맞게 전산 프로그램을 개발하고 있다. 이 과정에서 테이블 간의 상위 연관관계 식별이 불명확한 경우, IT 업무 담당자의 주관적 판단에 의존되므로 개인신용정보가 파기되지 못하거나 파기하지 말아야 하는 정보까지 파기되는 컴플라이언스 이슈가 발생한다. 따라서, 본 논문에서는 전산 프로그램에서 실행하는 SQL을 기반으로 참조하는 테이블을 식별하고, 테이블의 기본키 정보로 테이블 간의 상위 연관관계 분석하고, 시각화하여 객관적으로 파기 대상 범위를 선정하기 위한 모델과 알고리즘을 제시하고 구현하였다.

교통약자를 위한 전동 이동 보조기기 안전 경로 서비스의 개발과 평가 (Development and Evaluation of Safe Route Service of Electric Personal Assistive Mobility Devices for the Mobility Impaired People)

  • 우제승;홍순기;유상경;김회경
    • 한국지리정보학회지
    • /
    • 제26권3호
    • /
    • pp.85-96
    • /
    • 2023
  • 본 연구는 최근 이동권 개선을 위해 교통약자들을 중심으로 이용되고 있는 전동 이동 보조기기의 안전 경로를 제공하는 서비스를 개발하고 평가하였다. 부산광역시에 거주하는 교통약자들과 관련 기관 종사자(부산광역시 내 장애인 자립 생활센터, 장애인 협회 정회원, 전동 이동 보조기기 수리기사, 활동 보조사)들과의 설문을 통해 전동 이동 보조기기의 이동에 영향을 미치는 13종의 요인을 도출하였다. 각각의 요인들에 안전성 점수를 부여하고 현장에서 수집된 데이터로 객체 인식 AI 모델을 학습시켜 해당 요인들을 판별한 후, 최적경로 탐색 알고리즘을 통해 전동 이동 보조기기 경로 안내 서비스를 개발하였다. 동일한 출도착 경로를 대상으로 T-map에서 제공하는 일반 경로와 본 연구의 추천 경로를 비교한 결과, 일반 경로에서는 전동 이동 보조기기의 주행에 방해가 되거나 승차감을 불편하게 하는 장애물이 많았고 가파른 경사로 인해 이동이 불편했지만, 본 연구의 추천 경로에서는 상대적으로 장애물이 적었고 경사도 완만하여 전동 이동 보조기기의 주행에 무리가 없었다. 향후 연구에서는 전동 이동 보조기기 이용자의 실시간 위치를 기반으로 경로 안내 서비스를 구현하고 다수의 이용자를 대상으로 현장 실증테스트를 진행하여 사회적 수용성 평가 및 검증을 수행할 필요가 있다.

대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용 (Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity)

  • 이정원;임일
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.267-286
    • /
    • 2023
  • 인공지능 스피커로 대표되는 대화형 에이전트는 사람-컴퓨터 간 대화형이기 때문에 대화 상황에서 오류가 발생하는 경우가 잦다. 에이전트 사용자의 발화 기록에서 인식오류는 사용자의 발화를 제대로 인식하지 못하는 미인식오류 유형과 발화를 인식하여 서비스를 제공하였으나 사용자가 의도한 바와 다르게 인식된 오인식오류 유형으로 나뉜다. 이 중 오인식오류의 경우, 서비스가 제공된 것으로 기록되기 때문에 이에 대한 오류 탐지가 별도로 필요하다. 본 연구에서는 텍스트 마이닝 기법 중에서도 단어와 문서를 벡터로 바꿔주는 단어 임베딩과 문서 임베딩을 이용하여 단순 사용된 단어 기반의 유사도 산출이 아닌 단어의 분리 방식을 다양하게 적용함으로써 연속 발화 쌍의 유사도를 기반으로 새로운 오인식오류 및 신조어 탐지 방법을 탐구하였다. 연구 방법으로는 실제 사용자 발화 기록을 활용하여 오인식오류의 패턴을 모델 학습 및 생성 시 적용하여 탐지 모델을 구현하였다. 그 결과, 오인식오류의 가장 큰 원인인 등록되지 않은 신조어 사용을 탐지할 수 있는 패턴 방식으로 다양한 단어 분리 방식 중 초성 추출 방식이 가장 좋은 결과를 보임을 확인하였다. 본 연구는 크게 두 개의 함의를 가진다. 첫째, 인식오류로 기록되지 않아 탐지가 어려운 오인식오류에 대하여 다양한 방식 별 비교를 통해 최적의 방식을 찾았다. 둘째, 이를 실제 신조어 탐지 적용이 필요한 대화형 에이전트나 음성 인식 서비스에 적용한다면 음성 인식 단계에서부터 발생하는 오류의 패턴도 구체화할 수 있으며, 오류로 분류되지 않더라도 사용자가 원하는 결과에 맞는 서비스가 제공될 수 있음을 보였다.

AI모델을 적용한 군 경계체계 지능화 방안 (A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model)

  • 한창희;구하림;박복기
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.57-64
    • /
    • 2023
  • 현재 진행되는 고령화 및 인구절벽으로 대표되는 인구구조적 문제는 한국군 경계임무에 심각한 도전이 되고 있다. 본 연구의 목적은 AI모델을 적용해 군 경계체계를 지능화하는 것이다. 본 연구를 통해 제4차 산업혁명과 그 핵심이 되는 인공지능 알고리즘의 의의가 경계근무 상황실 내에서의 단순작업을 기계화하여 작업효율을 극대화하는 것임을 실증한다. 하나의 완성된 시스템으로서 군경계체계를 개발하기 위해, 지능화·자동화된 군(軍) 경계체계라는 목표로부터 필요한 인공지능 기술인 다중 객체 추적(multi-object tracking, MOT) 기술을 선택한다. 또한 체계 사용자의 접근성 및 체계 이용의 효율성을 담보하기 위해서는 데이터 시각화(data visualization)와 사용자 인터페이스(user interface)를 꼽았다. 이 추가 요소를 결합하여 하나의 유기적인 소프트웨어 애플리케이션을 구성한다. CCTV 영상 데이터 수집한 장소는 00부대 제1정문 및 제2정문에 설치된 CCTV 카메라이며, 지통실의 협조 아래 영상 수집을 진행하였다. 실험결과를 통해 경계체계를 지능화·자동화시켜 더 많은 정보를 경계체계 운용인원에게 전달할 수 있음을 보였다. 그러 나 여전히 개발된 소프트웨어 경계체계 역시 한계점이 존재한다. 이를 설명하여 군 경계체계 개발의 향후 방향성을 제시한다.

BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구 (A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization)

  • 주현철;이주형;임종원;이재희;강인석
    • 토지주택연구
    • /
    • 제14권3호
    • /
    • pp.145-155
    • /
    • 2023
  • 최근 건설산업 분야에 BIM 기술의 활용이 보편화되면서 3D 모델과 실제 시공 부위의 오류 확인 등을 위해 다양한 객체 탐지 알고리즘들이 활용되고 있다. 객체 탐지 기술은 건축물, 교량, 터널 등 건설시설물의 종류에 따라 객체 특성이 상이하므로 객체 탐지 기술도 적절한 방법을 사용할 필요가 있다. 또한 객체 탐지를 위해서는 초기 객체 이미지가 있어야 하며 이를 위해서도 드론, 스마트폰 등 다양한 방법으로 이미지 취득이 가능하다. 본 연구에서는 철도와 도로 시설의 터널 부위에 대하여 초기 이미지 구축을 위해 터널 내부 촬영에 최적화된 360° 카메라를 이용하여 이미지를 촬영하고, 촬영된 이미지로부터 실제 객체를 탐지하기 위한 객체 탐지 방법론으로 YOLO 알고리즘, SSD 알고리즘 및 R-CNN 알고리즘을 적용하여 방법론별 객체 탐지의 정확도를 비교 분석한다. 분석 결과 Faster R-CNN 알고리즘이 SSD, YOLO v5 알고리즘에 비해 높은 인식률 및 mAP 값을 가졌으며 인식률들의 최소·최대 값의 차이가 작아 균등한 검측 능력을 나타냈다. 이러한 연구는 철도와 도로 시설공사에 BIM 적용이 확산되고 있는 점을 고려하면 360° 카메라의 활용 방법 확대와 유지보수를 위한 터널 시설 부위의 객체 탐지 방법론 적용에 활용될 수 있다.

빅데이터 기반 수도사고 위기대응 고도화 방안에 관한 연구 (Research on Advanced Measures for Emergency Response to Water Accidents based on Big-Data)

  • 김호성;김종립;김재중;윤영민;김대경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.317-321
    • /
    • 2022
  • '19년 인천시 수돗물 적수 사고 발생에 따라 환경부에서는 수도운영관리 고도화, 체계적인 기술지원 및 사고대응을 위해 「수돗물 안전관리 종합대책」을 수립하여 수돗물 공급 전 과정의 스마트 상수도 관리체계를 구축 중이다. 수도사고 위기대응 고도화를 위해서는 유량, 압력, 수위 등 실시간 수도운영 데이터의 신뢰성 확보와 더불어 빅데이터 분석기법을 활용한 사전 경보 알고리즘 개발 및 적용이 필수적이다. 본 논문에서는 수도운영 데이터 주요항목(유량, 압력, 수위 등)에 대한 데이터 기반의 다양한 통계기법을 활용해 최적 운영범위 선정, 감시경보체계 고도화를 위한 기반을 마련하고, 분석 결과를 K-water 운영시스템 및 감시경보시스템과의 연계를 위한 시스템 모델링에 대해 연구한다. 또한, 취수장과 정수장 간원수 탁도의 변화에 대한 교차 상관분석을 통해 도달시간 등에 대해 고찰하고, 취수장 펌프 가동에 따른 유량 변화 및 시간 지연을 고려한 원수 탁도 데이터를 적용하여 정수장 원수 탁도를 예측하는 모델에 관해 연구하고자 한다.

  • PDF

79종의 임플란트 식별을 위한 딥러닝 알고리즘 (Deep learning algorithms for identifying 79 dental implant types)

  • 공현준;유진용;엄상호;이준혁
    • 구강회복응용과학지
    • /
    • 제38권4호
    • /
    • pp.196-203
    • /
    • 2022
  • 목적: 본 연구는 79종의 치과 임플란트에 대해 딥러닝을 이용한 식별 모델의 정확도와 임상적 유용성을 평가하는 것을 목적으로 하였다. 연구 재료 및 방법: 2001년부터 2020년까지 30개 치과에서 임플란트 치료를 받은 환자들의 파노라마 방사선 사진에서 총 45396개의 임플란트 고정체 이미지를 수집했다. 수집된 임플란트 이미지는 18개 제조사의 79개 유형이었다. 모델 학습을 위해 EfficientNet 및 Meta Pseudo Labels 알고리즘이 사용되었다. EfficientNet은 EfficientNet-B0 및 EfficientNet-B4가 하위 모델로 사용되었으며, Meta Pseudo Labels는 확장 계수에 따라 두 가지 모델을 적용했다. EfficientNet에 대해 Top 1 정확도를 측정하고 Meta Pseudo Labels에 대해 Top 1 및 Top 5 정확도를 측정하였다. 결과: EfficientNet-B0 및 EfficientNet-B4는 89.4의 Top 1 정확도를 보였다. Meta Pseudo Labels 1은 87.96의 Top 1 정확도를 보였고, 확장 계수가 증가한 Meta Pseudo Labels 2는 88.35를 나타냈다. Top 5 정확도에서 Meta Pseudo Labels 1의 점수는 97.90으로 Meta Pseudo Labels 2의 97.79보다 0.11% 높았다. 결론: 본 연구에서 임플란트 식별에 사용된 4가지 딥러닝 알고리즘은 모두 90%에 가까운 정확도를 보였다. 임플란트 식별을 위한 딥러닝의 임상적 적용 가능성을 높이려면 더 많은 데이터를 수집하고 임플란트에 적합한 미세 조정 알고리즘의 개발이 필요하다.

딥러닝 기반 국내 지반의 지지층 깊이 예측 (Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data)

  • 장영은;정재호;한진태;유용균
    • 한국지반공학회논문집
    • /
    • 제38권3호
    • /
    • pp.35-42
    • /
    • 2022
  • 지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.