• Title/Summary/Keyword: Algorithm Jamming

Search Result 115, Processing Time 0.02 seconds

A Self-Organizing Angle-based Routing Protocol for Urban Environments (도심환경에서의 자율 군집적인 각도 기반 라우팅 프로토콜)

  • Oh, Seungyong;Cho, Keuchul;Kim, Junhyung;Yun, Jeongbae;Seong, Gihyuk;Han, Kijun
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.379-385
    • /
    • 2013
  • MANET is not suitable to be applied to vehicle environments because of frequent path loss and path re-routing. To solve these problem, It is known that location-based routing protocol VANET is efficient. But, the VANET algorithm does not consider urban environments due to frequent vehicle movement and jamming by tall building. In this paper, we propose an efficient routing protocol to improve transfer efficiency and reduce transfer hop count. in urban networks.

A Narrowband Interference Excision Algorithm in the Frequency Domain for GNSS Receivers

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Ho-Keun;Lee, Dae-Yearl;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.359-364
    • /
    • 2006
  • Interference can seriously degrade the performance of GPS receiver because GPS signal has extremely low power at earth surface. This paper presents a Narrowband Interference Excision Filter (NIEF) in frequency domain that removes narrowband interferences with small signal loss. A NIEF transforms the received GPS signals with interferences into the frequency domain with FFT and then compute statistics such as mean and standard deviation to determine an excision threshold. All spectrums exceeding the threshold are removed and the remaining spectrums are restored by IFFT. A NIEF effectively can remove various and strong interferences with a simple structure. However, the signal power loss is unavoidable during FFT and IFFT. Besides the hamming window and overlap technique, a threshold-whitening technique and an adaptive detection threshold are adopted to effectively reduce the signal power loss. The performance of implemented NIEF is evaluated using real signals obtained by 12 bit GPS signal acquisition board. The output of NIEF is fed into the Software Defined Receiver to evaluate the acquisition and tracking performance. Experimental results shows that many types of interference such as single-tone CWI, AM, FM, swept CWI and multi-tones CWI are effectively mitigated with small signal power loss.

  • PDF

Development of the Planar Active Phased Array Radar System with Real-time Adaptive Beamforming and Signal Processing (실시간으로 적응빔형성 및 신호처리를 수행하는 평면능동위상배열 레이더 시스템 개발)

  • Kim, Kwan Sung;Lee, Min Joon;Jung, Chang Sik;Yeom, Dong Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.812-819
    • /
    • 2012
  • Interference and jamming are becoming increasing concern to a radar system nowdays. AESA(Active Electronically Steered Array) antennas and adaptive beamforming(ABF), in which antenna beam patterns can be modified to reject the interference, offer a potential solution to overcome the problems encountered. In this paper, we've developed a planar active phased array radar system, in which ABF, target detection and tracking algorithm operate in real-time. For the high output power and the low noise figure of the antenna, we've designed the S-band TRMs based on GaN HEMT. For real-time processing, we've used wavelenth division multiplexing technique on fiber optic communication which enables rapid data communication between the antenna and the signal processor. Also, we've implemented the HW and SW architecture of Real-time Signal Processor(RSP) for adaptive beamforming that uses SMI(Sample Matrix Inversion) technique based on MVDR(Minimum Variance Distortionless Response). The performance of this radar system has been verified by near-field and far-field tests.

Performance Analysis of Adaptive Beamforming System Based on Planar Array Antenna (평면 배열 안테나 기반의 적응 빔형성 시스템 성능 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The signal intelligence (SIGINT) technology is actively used for collecting various data, in a number of fields, including a military industry. In order to collect the signal information and data and to transmit/receive the collected data efficiently, the accurate angle-of-arrival (AOA) information is required and communication disturbance from the interference or jamming signal should be minimized. In this paper, we present the structure of an adaptive beam-forming satellite system based on the planar array antenna, for collecting and transmitting/receiving the signal information and data efficiently. The presented adaptive beam-forming system consists of an antenna in the form of a planar array, an AOA estimator based on the Multiple Signal Classification (MUSIC) algorithm, an adaptive Minimum Variance Distortionless Response (MVDR) interference canceler, a signal processing and D/B unit, and a transmission beamformer based on Minimum mean Square Error (MMSE). In addition, through the computer simulation, we evaluate and analyze the performance of the proposed system.

Performance Analysis of Monopulse System Based on Third-Order Taylor Expansion in Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 3차 테일러 전개 기반 해석적 분석)

  • Ham, Hyeong-Woo;Kim, Kun-Young;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.14-21
    • /
    • 2021
  • In this paper, it is shown how the performance of the monopulse algorithm in the presence of an additive noise can be obtained analytically. In the previous study, analytic performance analysis based on the first-order Taylor series and the second-order Taylor series has been conducted. By adopting the third-order Taylor series, it is shown that the analytic performance based on the third-order Taylor series can be made closer to the performance of the original monopulse algorithm than the analytic performance based on the first-order Taylor series and the second-order Taylor series. The analytic MSE based on the third-order Taylor approximation reduces the analytic MSE error based on the second-order Taylor approximation by 89.5%. It also shows faster results in all cases than the Monte Carlo-based MSE. Through this study, it is possible to explicitly analyze the angle estimation ability of monopulse radar in an environment where noise jamming is applied.