• 제목/요약/키워드: Algorithm Jamming

검색결과 115건 처리시간 0.026초

선형 배열 안테나에서 수정된 유전 알고리즘을 이용한 부배열 구조 최적화 (Optimization of Subarray Configurations in Linear Array Antenna Using Modified Genetic Algorithm)

  • 김준호;김두수;김선주;양훈기;천창율;정용식
    • 한국전자파학회논문지
    • /
    • 제23권2호
    • /
    • pp.187-195
    • /
    • 2012
  • 본 논문에서는 유전 알고리즘에 기반하여 선형 위상 배열 안테나에서 합성 빔의 부엽 세기를 최소화하기 위한 부배열 구조 최적화 기법을 제안한다. 부배열 구조의 최적 설계 시 부배열 구성에 적용이 가능하도록 유전 알고리즘의 연산을 수정하였다. 제안된 부배열 설계법을 이용하여 40개의 배열 소자를 갖는 선형 배열 안테나에서 합성 빔 및 재밍에 대한 적응 신호 처리 후의 부엽 세기를 최소로 하는 불규칙 구조의 16개로 구성된 부배열구조를 설계하였고, 규칙적인 부배열 구조에서의 최대 부엽 세기보다 약 10 dB 감소된 부엽 세기를 확인하였다.

무선 센서 네트워크에서 C-SCGP를 이용한 RSS/AOA 이상치 제거 기반 표적 위치추정 기법 (Outlier Reduction using C-SCGP for Target Localization based on RSS/AOA in Wireless Sensor Networks)

  • 강세영;이재훈;송종인;정원주
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.31-37
    • /
    • 2021
  • 본 논문에서는 무선 센서 네트워크에서 이상치를 포함한 수신 신호 강도와 신호의 도달 각도 측정치 기반의 표적위치추정 성능 저하를 방지하기 위한 이상치 검출 알고리즘 C-SCGP를 제안한다. 센서 오작동, 재밍, 심한 잡음과 같은 다양한 이상치 원인으로 인해 표적 위치추정 정확도가 크게 떨어질 수 있어, 모든 이상치를 탐지하고 제거하는 것이 중요하다. 이러한 이상치를 제거하기 위해 single cluster graph partitioning (SCGP) 알고리즘이 널리 사용되고 있다. 기존의 SCGP 알고리즘은 hyperparameter 최적화를 통한 threshold 설정과 이상치 확률 계산이 필수적이므로 다양한 분야에 효율적인 적용이 제한되어왔다. 본 논문에서 제안된 continuous-SCGP (C-SCGP) 알고리즘은 이러한 SCGP의 약점을 극복한다. 다양한 잡음 환경에서 threshold 설정과 이상치 확률 계산이 필요 없는 제안된 C-SCGP 알고리즘과 threshold 설정과 이상치 확률 계산을 요구하는 SCGP 알고리즘의 이상치 제거 성능이 같음을 최종 추정된 표적의 RMSE 성능을 통하여 검증하였다.

WiFi(RLAN) and a C-Band Weather Radar Interference

  • Moon, Jongbin;Ryu, Chansu
    • 통합자연과학논문집
    • /
    • 제10권4호
    • /
    • pp.216-224
    • /
    • 2017
  • In the terrain of the Korean peninsula, mountainous and flat lands are complexly distributed in small areas. Therefore, local severe weather develops and disappears in a short time due to the influence of the terrain. Particularly in the case of local severe weather with heavy wind that has the greatest influence on aviation meteorology, the scale is very small, and it occurs and disappears in a short time, so it is impossible to predict with fragmentary data alone. So, we use weather radar to detect and predict local severe weather. However, due to the development of wireless communication services and the rapid increase of wireless devices, radio wave jamming and interference problems occur. In this research, we confirmed through the cases that when the radio interference echo which is one of the non-precipitation echoes that occur during the operation of the weather radar is displayed in the image, its form and shape are shown in a long bar shape, and have a strong dBZ. We also found the cause of the interference through the radio tracking process, and solved through the frequency channel negotiation and AP output minimizing. The more wireless devices increase as information communication technology develops in the future, the more emphasized the problem of radio wave interference will be, and we must make the radio interference eliminated through the development of the radio interference cancellation algorithm.

Kalman Filter-based Navigation Algorithm for Multi-Radio Integrated Navigation System

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권2호
    • /
    • pp.99-115
    • /
    • 2020
  • Since GNSS is easily affected by jamming and/or spoofing, alternative navigation systems can be operated as backup system to prepare for outage of GNSS. Alternative navigation systems are being researched over the world, and a multi-radio integrated navigation system using alternative navigation systems such as KNSS, eLoran, Loran-C, DME, VOR has been researched in Korea. Least Square or Kalman filter can be used to estimate navigation parameters in the navigation system. A large number of measurements of the Kalman filter may lead to heavy computational load. The decentralized Kalman filter and the federated Kalman filter were proposed to handle this problem. In this paper, the decentralized Kalman filter and the federated Kalman filter are designed for the multi-radio integrated navigation system and the performance evaluation result are presented. The decentralized Kalman filter and the federated Kalman filter consists of local filters and a master filter. The navigation parameter is estimated by local filters and master filter compensates navigation parameter from the local filters. Characteristics of three Kalman filters for a linear system and nonlinear system are investigated, and the performance evaluation results of the three Kalman filters for multi-radio integrated navigation system are compared.

선형 제한 조건의 최적 가중 벡터에 대한 연구 (A Study on the Optimum Weight Vector of Linearly Constrained Conditions)

  • 신호섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권5호
    • /
    • pp.101-107
    • /
    • 2011
  • 본 논문에서는 적응 배열 안테나 시스템에서 간섭 및 재밍 신호를 제거하기 위해서 최적 가중 벡터를 연구하였다. 최적 가중 벡터는 선형 제한 조건에서 최소 분산 알고리즘과 비용함수를 적용시켜 구하였고, 목표물의 신호를 정확히 추정하였다. 적응 배열 안테나 시스템은 간섭 및 재머전력을 감소시키고 신호대 잡음비를 향상시키는 시스템이다. 적응 배열 안테나 시스템은 각 안테나 배열 소자의 출력이 탭(Tap)을 거쳐 지연되고 각 탭에 복소 가중치가 곱해져서 최종적으로 하나의 복합신호를 만든다. 최적의 가중치를 구하기 위해서 본 논문에서는 입력 공분산 행렬의 최적 가중벡터를 이용하였다. 본 논문에서 제안된 알고리즘으로 모의 실험한 결과 분해능은 $3^{\circ}$이하로 향상되었으며 부엽은 약 10 dB 감소하였음을 입증하였다.

A Hybrid Correction Technique of Missing Load Data Based on Time Series Analysis

  • Lee, Chan-Joo;Park, Jong-Bae;Lee, Jae-Yong;Shin, Joong-Rin;Lee, Chang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권4호
    • /
    • pp.254-261
    • /
    • 2004
  • Traditionally, electrical power systems had formed the vertically integrated industry structures based on the economics of scale. However, power systems have been recently reformed to increase their energy efficiency. According to these trends, the Korean power industry underwent partial reorganization and competition in the generation market was initiated in 2001. In competitive electric markets, accurate load data is one of the most important issues to maintaining flexibility in the electric markets as well as reliability in the power systems. In practice, the measuring load data can be uncertain because of mechanical trouble, communication jamming, and other issues. To obtain reliable load data, an efficient evaluation technique to adjust the missing load data is required. This paper analyzes the load pattern of historical real data and then the tuned ARIMA (Autoregressive Integrated Moving Average), PCHIP (Piecewise Cubic Interpolation) and Branch & Bound method are applied to seek the missing parameters. The proposed method is tested under a variety of conditions and also tested against historical measured data from the Korea Energy Management Corporation (KEMCO).

지평선을 이용한 영상기반 위치 추정 방법 및 위치 추정 오차 (A Vision-based Position Estimation Method Using a Horizon)

  • 신종진;남화진;김병주
    • 한국군사과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.169-176
    • /
    • 2012
  • GPS(Global Positioning System) is widely used for the position estimation of an aerial vehicle. However, GPS may not be available due to hostile jamming or strategic reasons. A vision-based position estimation method can be effective if GPS does not work properly. In mountainous areas without any man-made landmark, a horizon is a good feature for estimating the position of an aerial vehicle. In this paper, we present a new method to estimate the position of the aerial vehicle equipped with a forward-looking infrared camera. It is assumed that INS(Inertial Navigation System) provides the attitudes of an aerial vehicle and a camera. The horizon extracted from an infrared image is compared with horizon models generated from DEM(Digital Elevation Map). Because of a narrow field of view of the camera, two images with a different camera view are utilized to estimate a position. The algorithm is tested using real infrared images acquired on the ground. The experimental results show that the method can be used for estimating the position of an aerial vehicle.

A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

  • Xiao-Feng, He;Xiao-Ping, Hu;Liang-Qing, Lu;Kang-Hua, Tang
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.491-494
    • /
    • 2006
  • Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

  • PDF

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.

슈퍼 픽셀기반 무인항공 영상 영역분할 및 분류 (Super-Pixel-Based Segmentation and Classification for UAV Image)

  • 김인규;황승준;나종필;박승제;백중환
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.151-157
    • /
    • 2014
  • 최근 무인항공기는 군사용뿐만 아니라 민간용으로도 많이 사용되고 있다. 무인항공기는 미리 입력된 좌표에 따라 GPS 정보를 이용하여 자동비행한다. 그러나 재밍이나 외부 교란에 의해 GPS 신호를 수신할 수 없으면 자동비행이 불가능 해진다. 이러한 문제를 해결하기 위한 한 방법으로, 본 연구에서는 무인기에 탑재된 카메라로부터 촬영된 영상으로부터 실시간으로 특정 영역을 검출하고 인식하는 알고리즘을 제안한다. 실시간 분류와 기계 학습에 사용할 특징을 추출하기 위한 전처리 과정으로 군집화 알고리즘인 그래프 기반 분할 알고리즘을 사용하여 슈퍼 픽셀화 하였다. 다양한 컬러모델 및 혼합 컬러 모델을 비교 분석하여 가장 이상적인 혼합 모델을 선정하고, 분류 알고리즘으로는 적은 트레이닝 데이터로도 뛰어난 분류 성능을 낼 수 있는 서포트 벡터 머신을 사용하였다. 무인항공 영상으로부터 18개의 컬러와 텍스처 특징 벡터를 추출하고 학습 및 예측과정을 통해 하천, 비닐하우스, 논 등 3 종류의 영역을 실시간으로 분류하였다.