• Title/Summary/Keyword: Algorithm Development

Search Result 6,969, Processing Time 0.036 seconds

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

Improving the Genetic Algorithm for Maximizing Groundwater Development During Seasonal Drought

  • Chang, Sun Woo;Kim, Jitae;Chung, Il-Moon;Lee, Jeong Eun
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.435-446
    • /
    • 2020
  • The use of groundwater in Korea has increased in recent years to the point where its extraction is restricted in times of drought. This work models the groundwater pumping field as a confined aquifer in a simplified simulation of groundwater flow. It proposes a genetic algorithm to maximize groundwater development using a conceptual model of a steady-state confined aquifer. Solving the groundwater flow equation numerically calculates the hydraulic head along the domain of the problem; the algorithm subsequently offers optimized pumping strategies. The algorithm proposed here is designed to improve a prior initial groundwater management model. The best solution is obtained after 200 iterations. The results compare the computing time for five simulation cases. This study shows that the proposed algorithm can facilitate better groundwater development compared with a basic genetic algorithm.

Development of Heuristic Algorithm Using Data-mining Method (데이터마이닝 방법을 응용한 휴리스틱 알고리즘 개발)

  • Kim, Pan-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.94-101
    • /
    • 2005
  • This paper presents a data-mining aided heuristic algorithm development. The developed algorithm includes three steps. The steps are a uniform selection, development of feature functions and clustering, and a decision tree making. The developed algorithm is employed in designing an optimal multi-station fixture layout. The objective is to minimize the sensitivity function subject to geometric constraints. Its benefit is presented by a comparison with currently available optimization methods.

Template Matching-Based Target Recognition Algorithm Development and Verification using SAR Images (SAR 영상을 이용한 템플릿 매칭 기반 자동식별 알고리즘 구현 및 성능시험)

  • Lim, Ho;Chae, Daeyoung;Yoo, Ji Hee;Kwon, Kyung-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.364-377
    • /
    • 2014
  • In this paper, we have developed a target recognition algorithm based on a template matching technique using Synthetic Aperture Radar (SAR) images. For efficient computations, Radon transform-based azimuth estimation algorithm was used with the template matching. MSTAR data set was divided into two groups according to the depression angles, which were a train set and a test set. Template data were generated by rotating and cropping chips which were from MSTAR train set using the azimuth estimation algorithm. Then the template matching process between test data and template data was performed under various conditions. Performance variation according to contrast enhancement preprocessing which is scarce in open literature was also presented. The analysis results show that the target recognition algorithm could be useful for the automatic target recognition using SAR images.

The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System (전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘)

  • Han, In-Sik;Lee, Yoon-Bok;Choi, Kyo-Jun;Kim, Jae-Yong;Jang, Myeong-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

Development of a Tracking Algorithm for Shipboard Satellite Antenna Systems (선박용 위성 안테나의 트랙킹 알고리즘 개발)

  • 고운용;황승욱;진강규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.219-224
    • /
    • 2001
  • This paper presents the development of a tracking algorithm for shipboard satellite antenna systems which can enhance the tracking performance. In order to overcome some drawbacks of the conventional step tracking algorithm, the proposed algorithm searches for the best tracking angles using gradient-based formulae and signal intensities measured according to a search pattern. The effectiveness of the proposed algorithm is demonstrated through simulation using real-world data.

  • PDF

The Correcting Algorithm on Geometric Distortion of Polar Format Algorithm (PFA의 기하 왜곡 보정 기법)

  • Lee, Hankil;Kim, Donghwan;Son, Inhye
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Polar fomat algorithm (PFA) was derived from medical imaging theory, known as back projection, to process synthetic aperture radar(SAR) data. The difference between the operating condition of SAR and back projection assumption makes two distortions. First, the focusing performance of PFA is degraded in proportion to distances from the scene center. Second, the geometric accuracy in SAR images is distorted. Several methods were introduced to mitigate the distortions, but some disadvantages, such as the geometric discontinuity, are arisen when sub-images are combined. This paper proposes the novel method to compensate the geometric distortion with chirp Z-transform (CZT). This method corrects precisely the geometric errors without any problems, because a whole image can be processed all at once.

Development of a Microscopic Gap Measuring Algorithm with LabVIEW IMAQ Module (LabVIEW의 영상처리 모들을 이용한 미소 거리 측정 알고리즘 개발)

  • Kim, Jae-Hoon;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.111-112
    • /
    • 2008
  • In this study, an image processing algorithm with Lab VIEW IMAQ Module is presented and discussed for the development of a microscopic gap measuring system using CCD sensor. LabVIEW IMAQ development application that is developed by National Instrument Co. Inc. has a graphical interface and many image processing functions, so that it provides an easier environment for the development of a measurement algorithm using the image data. Actual microscopic gap measuring experiment was executed using the algorithm developed in this study and it showed a promising result. Also, we could obtain the convenience of Lab VIEW IMAQ in developing the algorithm.

  • PDF

Optimal Acoustic Search Path Planning Based on Genetic Algorithm in Discrete Path System (이산 경로 시스템에서 유전알고리듬을 이용한 최적음향탐색경로 전략)

  • CHO JUNG-HONG;KIM JUNG-HAE;KIM JEA-SOO;LIM JUN-SEOK;KIM SEONG-IL;KIM YOUNG-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.69-76
    • /
    • 2006
  • The design of efficient search path to maximize the Cumulative Detection Probability(CDP) is mainly dependent on experience and intuition when searcher detect the target using SONAR in the ocean. Recently with the advance of modeling and simulation method, it has been possible to access the optimization problems more systematically. In this paper, a method for the optimal search path calculation is developed based on the combination of the genetic algorithm and the calculation algorithm for detection range. We consider the discrete system for search path, space, and time, and use the movement direction of the SONAR for the gene of the genetic algorithm. The developed algorithm, OASPP(Optimal Acoustic Search Path Planning), is shown to be effective, via a simulation, finding the optimal search path for the case when the intuitive solution exists. Also, OASPP is compared with other algorithms for the measure of efficiency to maximize CDP.

Track Initiation Algorithm Based on Weighted Score for TWS Radar Tracking (TWS 레이더 추적을 위한 가중 점수 기반 추적 초기화 알고리즘 연구)

  • Lee, Gyuejeong;Kwak, Nojun;Kwon, Jihoon;Yang, Eunjeong;Kim, Kwansung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, we propose the track initiation algorithm based on the weighted score for TWS radar tracking. This algorithm utilizes radar velocity information to calculate the probabilistic track score and applies the Non-Maximum-Suppression(NMS) to confirm the targets to track. This approach is understood as a modification of a conventional track initiation algorithm in a probabilistic manner. Also, we additionally apply the weighted Hough transform to compensate a measurement error, and it helps to improve the track detection probability. We designed the simulator in order to demonstrate the performance of the proposed track initiation algorithm. The simulation result show that the proposed algorithm, which reduces about 40 % of a false track probability, is better than the conventional algorithm.