• Title/Summary/Keyword: Algorithm Component

Search Result 1,728, Processing Time 0.026 seconds

Fast Extraction of Symmetrical Components from Distorted Three-Phase Signals Based on Asynchronous-Rotational Reference Frame

  • Hao, Tianqu;Gao, Feng;Xu, Tao
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1045-1053
    • /
    • 2019
  • A symmetrical component decomposition scheme utilizing the characteristics of the asynchronous rotational reference frame transformation is proposed in this paper for the extraction of the positive and negative sequence components of distorted three-phase grid voltages. The undesired frequency component can be removed using a specially designed series coordinate transformation and half-cycle delays, where the delay can be controlled by adjusting the frequency of the rotating reference frame. The extracted symmetrical component can then be compensated based on the applied coordinated transformation. The dynamic response of the proposed algorithm is improved when compared to that of conventional methods. The effectiveness of the proposed algorithm is verified by simulation and experimental results.

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

Adaptive Feedback Cancellation Using by Independent Component Analysis for Digital Hearing Aid (독립성분분석을 이용한 디지털 보청기용 적응형 궤환 제거)

  • Ji, Yoon-Sang;Lee, Sang-Min;Jung, Sae-Young;Kim, In-Young;Kim, Sun-I
    • Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.79-89
    • /
    • 2005
  • Acoustic feedback between microphone and receiver can be effectively cancelled adaptive feedback cancellation algorithm. Although many speech sounds have non-Gaussian distribution, most algorithms were tested with speech like sounds whose distribution were Guassian type. In this paper, we proposed an adaptive feedback cancellation algorithm based on independent component analysis (ICA) for digital hearing aid. The algorithm was tested with not only Gaussian distribution but also Laplacian distribution. We verified that the proposed algorithm has better acoustic feedback cancelling performance than conventional normalized root mean square (NLMS) algorithm, especially speech like sounds with Laplacian distribution.

  • PDF

An Introduction to Energy-Based Blind Separating Algorithm for Speech Signals

  • Mahdikhani, Mahdi;Kahaei, Mohammad Hossein
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.175-178
    • /
    • 2014
  • We introduce the Energy-Based Blind Separating (EBS) algorithm for extremely fast separation of mixed speech signals without loss of quality, which is performed in two stages: iterative-form separation and closed-form separation. This algorithm significantly improves the separation speed simply due to incorporating only some specific frequency bins into computations. Simulation results show that, on average, the proposed algorithm is 43 times faster than the independent component analysis (ICA) for speech signals, while preserving the separation quality. Also, it outperforms the fast independent component analysis (FastICA), the joint approximate diagonalization of eigenmatrices (JADE), and the second-order blind identification (SOBI) algorithm in terms of separation quality.

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

Connected-component Labeling using Contour Following (윤곽추적 영역채색 기법)

  • 심재창;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.95-107
    • /
    • 1994
  • A new efficient contour following algorithm for connected-component labeling processing is proposed. The basic idea of the algorithm is that the total number of downward chain codes is the same as one of upward chain codes along the closed contour. If the chain code direction is upward, then region start mark is assigned at the chain code departure pixel and if the chain code is downward, then region end mark is assigned at the chain code arrival pixel. The proposed algorithm extracts directly the contour information from only the current direction information of chain. This makes the algorithm simple and fast and requires less memory with comparison to the conventional algorithms.The proposed contour following algorithm can be applied to the various kind of image processing such as region filling, restoration and region feature extraction.

  • PDF

Nonlinear System Modeling Using Bacterial Foraging and FCM-based Fuzzy System (Bacterial Foraging Algorithm과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • Jo Jae-Hun;Jeon Myeong-Geun;Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.121-124
    • /
    • 2006
  • 본 논문에서는 Bacterial Foraging Algorithm과 FCM(fuzzy c-means)클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이터 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 Bacterial Foraging Algorithm을 이용하여 전제부 파라미터를 최적화 시킨다. 결론부 파라미터는 RLSE(Recursive Least Square Estimate)에 의해 추정되어진다. PCA(Principal Component Analysis)와 FCM을 적용함으로써 타당한 규칙 수를 생성하였고 Bacterial Foraging Algorithm을 이용하여 최적의 전제부 파라미터를 구하였다. 제안된 방법의 성능을 평가하기 위하여 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하였고 우수한 성능을 보임을 알 수 있었다.

  • PDF

A Local Path Planning Algorithm considering the Mobility of UGV based on the Binary Map (무인차량의 주행성능을 고려한 장애물 격자지도 기반의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Ko, Jung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • A fundamental technology of UGV(Unmanned Ground Vehicle) to perform a given mission with success in various environment is a path planning method which generates a safe and optimal path to the goal. In this paper, we suggest a local path-planning method of UGV based on the binary map using world model data which is gathered from terrain perception sensors. In specially, we present three core algorithms such as shortest path computation algorithm, path optimization algorithm and path smoothing algorithm those are used in the each composition module of LPP component. A simulation is conducted with M&S(Modeling & Simulation) system in order to verify the performance of each core algorithm and the performance of LPP component with scenarios.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

An efficient learning algorithm of nonlinear PCA neural networks using momentum (모멘트를 이용한 비선형 주요성분분석 신경망의 효율적인 학습알고리즘)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.361-367
    • /
    • 2000
  • This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.

  • PDF