• Title/Summary/Keyword: Algorithm Class

Search Result 1,193, Processing Time 0.027 seconds

Nearest Neighbor Based Prototype Classification Preserving Class Regions

  • Hwang, Doosung;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1345-1357
    • /
    • 2017
  • A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.

Adaptive Slot-Count Selection Algorithm based on Tag Replies in EPCglobal Gen-2 RFID System

  • Lim, In-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.653-655
    • /
    • 2011
  • EPCglobal proposed a Q-algorithm, which is used for selecting a slot-count in the next query round. However, it is impossible to allocate an optimized slot-count because the original Q-algorithm did not define an optimized weight C value. In this paper, we propose an adaptive Q-algorithm, in which we differentiate the weight values with respect to collision and empty slots. The weight values are defined with the identification time as well as the collision probability.

  • PDF

Improving the Error Back-Propagation Algorithm for Imbalanced Data Sets

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • Imbalanced data sets are difficult to be classified since most classifiers are developed based on the assumption that class distributions are well-balanced. In order to improve the error back-propagation algorithm for the classification of imbalanced data sets, a new error function is proposed. The error function controls weight-updating with regards to the classes in which the training samples are. This has the effect that samples in the minority class have a greater chance to be classified but samples in the majority class have a less chance to be classified. The proposed method is compared with the two-phase, threshold-moving, and target node methods through simulations in a mammography data set and the proposed method attains the best results.

kNNDD-based One-Class Classification by Nonparametric Density Estimation (비모수 추정방법을 활용한 kNNDD의 이상치 탐지 기법)

  • Son, Jung-Hwan;Kim, Seoung-Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.191-197
    • /
    • 2012
  • One-class classification (OCC) is one of the recent growing areas in data mining and pattern recognition. In the present study we examine a k-nearest neighbors data description (kNNDD) algorithm, one of the OCC algorithms widely used. In particular, we propose to use nonparametric estimation methods to determine the threshold of the kNNDD algorithm. A simulation study has been conducted to explore the characteristics of the proposed approach and compare it with the existing approach that determines the threshold. The results demonstrate the usefulness and flexibility of the proposed approach.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei;Hayat, T.;Ahmad, B.;Chen, Cheng-Wu
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.385-407
    • /
    • 2015
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.

Application Study of FQ-CoDel Algorithm based on QoS-guaranteed Class in Tactical Network (전술환경에서 QoS 보장을 위한 클래스 기반 FQ-Codel 알고리즘 적용 연구)

  • Park, Juman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.53-58
    • /
    • 2019
  • This paper proposes a class-based FQ-CoDel(Flow Queue-Control Delay) algorithm. A variety of application system services create bottlenecks in tactical communication network and the bottlenecks cause some problems such as traffic loss and delay. Therefore, more research on effective traffic processing is needed. The proposed class-based FQ-CoDel algorithm, suggests dynamic buffer management and scheduling, classifies specific packets in each queue according to service attribute and criticality and checks periodically latency of the packets in each queue. Also, it abandons the packets if some packets stay in queue above schedule time and manages the total amount of traffic stored in queue with certain level.

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

AN ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK DEFECTS

  • Ge, Rendong;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.1-20
    • /
    • 2003
  • A modified ABS algorithm for solving a class of singular non-linear systems, $F(x) = 0, $F\;\in \;R^n$, constructed by combining the discreted ABS algorithm and a method of Hoy and Schwetlick (1990), is presented. The second differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.

AN ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK ONE DEFECT

  • Ge, Ren-Dong;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.167-183
    • /
    • 2002
  • A modified discretization ABS algorithm for solving a class of singular nonlinear systems, F($\chi$)=0, where $\chi$, F $\in$ $R^n$, is presented, constructed by combining a discretization ABS algorithm arid a method of Hoy and Schwetlick (1990). The second order differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.