• Title/Summary/Keyword: Algorithm #3

Search Result 15,404, Processing Time 0.038 seconds

An Adaptive Z-buffer Algorithm for PDA Platform (PDA 플랫폼을 위한 적응형 Z-버퍼 알고리즘)

  • Kim Dae-Young;Kim Hyo-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.41-50
    • /
    • 2006
  • This paper aims to improve the efficiency of a 3D-graphic software engine in a PDA platform and the performance of a rasterizer. There are many problems in implementing a software engine in a mobile platform, due to its relatively weak processing power. Taking the advantages and complementing weaknesses of the depth-sort algorithm and the Z-buffer algorithm, we implemented an adaptive Z-buffer algorithm and proved its performance on several PDA platforms. Our algorithm was evaluated to have midway speed compared with two conventional algorithms. It also removed reversal errors in comparison with the depth-sort algorithm.

  • PDF

Virtual View Generation by a New Hole Filling Algorithm

  • Ko, Min Soo;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1023-1033
    • /
    • 2014
  • In this paper, performance improved hole-filling algorithm which includes the boundary noise removing pre-process that can be used for an arbitrary virtual view synthesis has been proposed. Boundary noise occurs due to the boundary mismatch between depth and texture images during the 3D warping process and it usually causes unusual defects in a generated virtual view. Common-hole is impossible to recover by using only a given original view as a reference and most of the conventional algorithms generate unnatural views that include constrained parts of the texture. To remove the boundary noise, we first find occlusion regions and expand these regions to the common-hole region in the synthesized view. Then, we fill the common-hole using the spiral weighted average algorithm and the gradient searching algorithm. The spiral weighted average algorithm keeps the boundary of each object well by using depth information and the gradient searching algorithm preserves the details. We tried to combine strong points of both the spiral weighted average algorithm and the gradient searching algorithm. We also tried to reduce the flickering defect that exists around the filled common-hole region by using a probability mask. The experimental results show that the proposed algorithm performs much better than the conventional algorithms.

Parameter Estimation of Three-Phase Induction Motor by Using Genetic Algorithm

  • Jangjit, Seesak;Laohachai, Panthep
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.360-364
    • /
    • 2009
  • This paper suggests the techniques in determining the values of the steady-state equivalent circuit parameters of a three-phase induction machine using genetic algorithm. The parameter estimation procedure is based on the steady-state phase current versus slip and input power versus slip characteristics. The propose estimation algorithm is of non-linear kind based on selection in genetic algorithm. The machine parameters are obtained as the solution of a minimization of objective function by genetic algorithm. Simulation shows good performance of the propose procedures.

SOME PROPERTIES OF SCHENSTED ALGORITHM USING VIENNOT'S GEOMETRIC INTERPRETATION

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.223-236
    • /
    • 2013
  • Schensted algorithm was first described in 1938 by Robinson [5], in a paper dealing with an attempt to prove the correctness of the Littlewood-Richardson rule. Schensted [9] rediscovered Schensted algorithm independently in 1961 and Viennot [12] gave a geometric interpretation for Schensted algorithm in 1977. In this paper we describe some properties of Schensted algorithm using Viennot's geometric interpretation.

Fast Detection of Copy Move Image using Four Step Search Algorithm

  • Shin, Yong-Dal;Cho, Yong-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.342-347
    • /
    • 2018
  • We proposed a fast detection of copy-move image forgery using four step search algorithm in the spatial domain. In the four-step search algorithm, the search area is 21 (-10 ~ +10), and the number of pixels to be scanned is 33. Our algorithm reduced computational complexity more than conventional copy move image forgery methods. The proposed method reduced 92.34 % of computational complexity compare to exhaustive search algorithm.

An Effective Encryption Algorithm for 3D Printing Model Based on Discrete Cosine Transform

  • Pham, Ngoc-Giao;Moon, Kwnag-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we present an effective encryption algorithm for 3D printing models in the frequency domain of discrete cosine transform to prevent illegal copying, access in the secured storage and transmission. Facet data of 3D printing model is extracted to construct a three by three matrix that is then transformed to the frequency domain of discrete cosine transform. The proposed algorithm is based on encrypting the DC coefficients of matrixes of facets in the frequency domain of discrete cosine transform in order to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The proposed algorithm is provide a better method and more security than previous methods.

Adaptive Q-Algorithm for Multiple Tag Identification in EPCglobal Gen-2 RFID System

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.307-311
    • /
    • 2010
  • EPCglobal Class-1 Gen-2 protocol has been proposed for UHF-band RFID systems. In Gen-2 standard, Q-algorithm was proposed to select a frame size for the next query round without estimating the number of tags. Therefore, the Q-algorithm has advantage that the reader's algorithm is simpler than other algorithms. However, it is impossible to allocate the optimized frame size. Also, the original Q-algorithm did not define an optimized parameter C for adjusting the frame size. In this paper, we propose an adaptive Q-algorithm with the different parameter $C_c$ and $C_i$ in accordance with the status of reply slot. Simulation results show that the proposed adaptive Q-algorithm outperforms the original Gen-2 Q-algorithm.

A return mapping algorithm for plane stress and degenerated shell plasticity

  • Liu, Z.;Al-Bermani, F.G.A.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.185-192
    • /
    • 1995
  • A numerical algorithm for plane stress and shell elasto-plasticity is presented in this paper. The proposed strain decomposition (SD) algorithm is an elastic predictor/plastic corrector algorithm, and in the context of operator splitting, is a return mapping algorithm. However, it differs significantly from other return mapping algorithms in that only the necessary response functions are used without invoking their gradients, and the stress increment is updated only at the end of the time step. This makes the proposed SD algorithm more suitable for materials with complex yield surfaces and will guard against error accumulation during the time step. Comparative analyses of structural systems using the proposed strain decomposition (SD) algorithm and the iterative radial return (IRR) algorithm are presented. The results demonstrate the accuracy and usefulness of the proposed algorithm.

Real-Time Step Count Detection Algorithm Using a Tri-Axial Accelerometer (3축 가속도 센서를 이용한 실시간 걸음 수 검출 알고리즘)

  • Kim, Yun-Kyung;Kim, Sung-Mok;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). The recognition rate of our algorithm was 97.34% better than that of the Actical device(91.74%) by 5.6%.

Convert 2D Video Frames into 3D Video Frames (2차원 동영상의 3차원 동영상 변화)

  • Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.117-123
    • /
    • 2009
  • In this paper, An algorithm which converts 2D video frames into 3D video frames of parallel looking stereo camea is proposed. The proposed algorithm finds the disparity information between two consecutive video frames and generates 3D video frames from the obtained disparity maps. The disparity information is obtained from the modified iterative convergence algorithm. The method of generating 3D video frames from the disparity information is also proposed. The proposed algorithm uses coherence method which overcomes the video pattern based algorithms.