• Title/Summary/Keyword: Alginate beads

Search Result 147, Processing Time 0.024 seconds

Weeding Efficacy of Melanized Formula with Epicoccosorus nematosporus on Eleocharis kuroguwai in the Field

  • Hong, Yeon-Kyu;Cho, Jae-Min;Uhm, Jae-Youl;Hyun, Jong-Nae;Lee, Bong-Choon;Song, Seok-Bo;Lee, Dong-Chang
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.92-96
    • /
    • 2003
  • The study was conducted to determine the cultural conditions and the effect of inert fillers for melanization and sporulation abilities of sodium alginate pellets, and the weeding efficacy of the formula in the field. Melanin production of E. nematosporus was affected by striking frequency. Percentage of melanized beads was increased to 80.6% at higher rpm up to 180. The melanized pellets produced more conidia with abundant mucilage than unmelanized pellets. Shaker culture of Epicoccosorus nematosporus with sodium alginate yielded a total of 55 mg per 100 pellets. Percentage of melanized pellets was highest with 81.0% and 83.3% of melanization, when wheat bran and rice polish were amended and produced the conidia with 65.4 and 68.4 mg per 100 pellets, respectively. When 1 L of conidial suspension of 6.0$\times$$10^5$ conidia per ml was applied on 30-day-old plants in a plot, 74.5% of the plants were killed within 20 days, whereas, its melanized sodium alginate pellets killed 57.8% of the plants in the same period. The number of tuber formation of Eleocharis kuroguwai in the untreated control plots was 128.5 per plot, but those of the plots treated with conidial suspension and melanized pellets were 22.1 and 39.7, respectively, at the end of the season. Results of this study showed that melanization of mycelia-mixed sodium alginate are an important sporulation factor in E. namatosporus as a mycoherbicide.

Optimal Conditions of Co-Immobilized Mixed Culture System with Aspergillus awamori and Zymomonas mobilis (Aspergillus awamori와 Zymomonas mobilis로 구성된 혼합고정화 배양계의 최적 조건)

  • 박석규;이상원;손봉수;최수철;서권일;성낙계;김홍출
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.803-810
    • /
    • 1995
  • Co-immobilized mixed culture system(A-Z system) composed of two different oxygen-demanding strains, aerobic(Aspergillus awamori) and anaerobic(Zymomonas mobilis) strains, in a Ca-alginate gel beads was developed to increase ethanol production from raw starch as a carbon source. Optimal mixture ratio of A. awamori and Z. mobilis was $1.25{\times}10^{9}\;spores/L-gel$ and 0.5g cells/L-gel, respectively. After 120 hours of cultivation, gel beads distinguished oxygen-rich surface for A. awamori from oxygen-deficient central part for Z. mobilis. At A-Z culture system, yield of ethanol on glucose, $Y_{p/s}=0.18$, was very low and there was high leakage of cells from surface of gel beads. At A-Z 36 cultrue system with changing silicon check valve for cotton plug at 36 hours in A-Z culture system, there was no cell leakage from gel beads, pH was maintained at around 4.3 during cultivation, and yield of ethanol on glucose, $Y_{p/s}=0.36$, showed 2 times higher than that of control culture system(cotton plug culture).

  • PDF

Removal/Recovery of Heavy Metals Using Biopolymer (생물고분자를 이용한 중금속 제거/회수에 관한 연구)

  • 안대희;정윤철
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.336-340
    • /
    • 1993
  • Zoogloea ramigera 115, well known type of bacteria to produce slime in sewage plants, was selected for biopolymer production. The extracted biopolymer showed high uptake capacity of metals such as cadmium and zinc. Especially the fermentor broth itself showed high adsorption of metal and could be used a biosorbent without an additional separation process. Biopolymer was immobilized into beads of calcium alginate and used in a packed bed reactor for the purpose of valued metals recovery. The biopolymer showed high removal efficiencies of 80% or greater for Cu, Cd, Mn and Zn, and high stability in sorption-desorption-resorption experiments. The immobilized biopolymer systems were found to be comparable to other metal removal systems such as ion exchange resins and to be of potential industrial application value.

  • PDF

Production of Palatinose by Immobilized Cells of Erwinia rhapontici (Erwinia rhapontici 고정화에 의한 Palatinose의 생산)

  • 윤종원;오광근
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.79-83
    • /
    • 1992
  • The characteristics of Erwinia rhapontici cells with $\alpha$-glucosyltransferase activity immobilized in Ca-alginate beads and the performance of two different types of reactor-stirred tank reactor(STR) and packed bed reactor(PBR)-charged with these immobilized cells to produce palatinose from sucrose were investigated. The optimal pH(5.5-6.0) and temperature($30-35^{\circ}C$) showed no appreciable difference between free and immobilized cells. The apparent Km value of the immobilized cells(0.28M) was approximately two times higher than that of free cells(0.13M) at $30^{\circ}C$. The half life of the immobilized cells was found to be 380 h with STR while much greater operational stability was achieved with PBR. Continuous operation of PBR at a space velocity of $0.2h^{-1}$ for 30 days showed only 5% loss of initial activity.

  • PDF

Improvement of $\gamma-Aminobutyric$ Acid (GABA) Production Using Cell Entrapment of Lactobacillus brevis GABA 057

  • Choi Soo-Im;Lee Jae-Won;Park Sang-Min;Lee Moo-Young;Ji Geun-Eog;Park Myeong-Soo;Heo Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.562-568
    • /
    • 2006
  • GABA $(\gamma-aminobutyric\;acid)$ is the principal inhibitory neurotransmitter in the brain. For the efficient production of GAB A, a semi continuous cell entrapment system using Lactobacillus brevis GABA 057 was optimized, including the substrate concentration, bead-stabilizing additives, and reaction conditions. The converted monosodium glutamate (MSG), which was added as a substrate for glutamic acid decarboxylase (GAD), increased from 2% (w/v) to 12% (w/v). The addition of isomaltooligosaccharide to the alginate beads also increased the stability of the entrapped L. brevis and GABA productivity. Consequently, when optimal conditions were applied, up to 223 mM GABA could be produced from 534 mM MSG after 48 h of reaction by using alginate-beadencapsulated L. brevis GABA 057.

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.

A Study on the Evaluation of the Adsorption Efficiency of Heavy Metals by the Content of Jellyfish Extract at Immunity Reaction in Alginate bead (알긴산 비드에 혼합된 해파리 면역 반응물질 함량에 따른 중금속 흡착효율 평가에 관한 연구)

  • Jong Hwan Kim;Hyeok Jin Park;Inho Choi;Eunjin Kim;I Song Choi;Jong-Min Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.431-436
    • /
    • 2023
  • As the industry develops, the amount of heavy metals flowing into the ecosystem is increasing. Heavy metals are difficult to decompose and remain in the ecosystem for a long time and cause toxicity, which is removed by physicochemical methods such as adsorption, filtration, and chemical precipitation during water treatment. In this study, Alginate bead was selected as a chelating resin for adsorbing and removing heavy metals, and the Jellyfish Extract at Immunity reaction (JEI) were mixed to evaluate the adsorption efficiency of heavy metals accordingly. beads mixed with JEI showed high adsorption efficiency in lead (79-99%) and copper (64-70%) according to the characteristics of Alginate, and low adsorption efficiency in cadmium (25-37%) and zinc (5-6%). Although heavy metal adsorption did not increase in proportion to the content of JEI, 50% and 100% JEI beads showed significant increases. As a result of applying the reaction rate equation, it was found that it was more suitable for the pseudo-secondary reaction equation than the pseudo-first reaction equation.

Lactulose Production Using Immobilized Cells Including Thermostable Cellobiose 2-epimerase (열내성 Cellobiose 2-epimerase를 발현하는 대장균의 고정화담체를 이용한 락툴로오스의 생산방법)

  • Park, Ah-Reum;Koo, Bong-Seong;Kim, Jin-Sook;Kim, Eun-Jeong;Lee, Hyeon-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.504-511
    • /
    • 2016
  • Lactulose, a synthetic disaccharide, has received increasing interest because of its role as a prebiotic that can increase the proliferation of Bifidobacterium and Lactobacillus spp. and enhance the absorption of calcium and magnesium. While the industrial production of lactulose is still mainly achieved by the chemical isomerization of lactose in alkaline media, this process has drawbacks including the need to remove catalysts and by-products, as well as high energy requirements. Recently, the use of cellobiose 2-epimerase (CE) has been considered an interesting alternative for industrial lactulose production. In this study, to develop a process for enzymatic lactulose production using CE, we screened improved mutant enzymes ($CS-H^RC^E$) from a library generated by an error-prone PCR technique. The thermostability of one mutant was enhanced, conferring stability up to $75^{\circ}C$, and its lactulose conversion yield was increased by 1.3-fold compared with that of wild-type CE. Using a recombinant Escherichia coli strain harboring a CS35 $H^RC^E$-expressing plasmid, we prepared cell beads immobilized on a Ca-alginate substrate and optimized their reaction conditions. In a batch reaction with 200 g/l lactose solution and the immobilized cell beads, lactose was converted into lactulose with a conversion yield of 43% in 2 h. In a repeated 38-plex batch reaction, the immobilized cell beads were relatively stable, and 80% of the original enzyme activity was retained after 4 cycles. In conclusion, we developed a reasonable method for lactulose production by immobilizing cells expressing thermostable CE. Further development is required to apply this approach at an industrial scale.

Ethanol Production by Immobilized Kluyveromyces marxianus FO43 Using Jerusalem Artichoke Powder (돼지감자 분말을 이용한 고정화 Kluyveromyces marxianus FO43의 에탄올 발효특성)

  • Lee, Hee-Suk;Choi, Eon-Ho
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.26-30
    • /
    • 1995
  • To produce ethanol from Jerusalem artichoke powder efficiently, Kluyveromyces marxianus FO43 cells were encapsulated in 2% sodium alginate and were cultured in batch reactor to investigate the fermentation properties. Batch culture of immobilized cells left for 4 days in 15% Jerusalem artichoke medium showed ethanol concentration of 3.38%(w/v) and ethanol yield to theoretical value of 54.20%, lower than 3.76%(w/v) and 71.13% for the culture of free cells. Addition of cellulase to $15{\sim}20%$ Jerusalem artichoke media increased the production of ethanol, owing to remarkable reduction in consistency of the suspension. So it was possible to achieve an ethanol concentration of 5.57%(w/v) arid an ethanol yield to theoretical value of 68.86% in even 20% Jerusalem artichoke medium by cultivation of immobilized cells for 4 days. The alginate beads showed constant ethanol productivity after recycling 11 times (22 days) in repeated batch fermentation.

  • PDF

High-Density Cultivation of Microalgae using Microencapsulation (Microencapsulation에 의한 미세조류의 고밀도 배양)

  • HAN Young-Ho;LEE Jung-Suck;KWAK Jung-Ki;LEE Eung-Ho;CHO Man-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.186-191
    • /
    • 1999
  • The three speices of miroalgae (Chlorella vulgaris, Dunaliella salina and Porphyridium purpureum) were immobilized in Ca-alginate capsules as a basic study for development of economic cultivation process, and then were cultivated in an air-bubble column bioreactor. Under the batch culture of aerobic conditions, the thickness of the capsule membrane and $CO_2$ supply did not affect the growth of the immobilized microalga, Chlorella vulgaris. Cell concentration of immobilized microalgae in the capsule was higher than those of imobilized microalgae in beads and free cells. The cell concentration of microencapsulated Dunaliella salina was greater about 5 times than that of free cells. Based on these results, it is concluded that the application of microencapsulation technology to the culture of microalgae was an effective method for high-density cultivation.

  • PDF