• Title/Summary/Keyword: Alginate beads

Search Result 147, Processing Time 0.024 seconds

Ca-Alginate에 고정화된 Calcium Carbonate를 완충제로 사용한 Bifidobacterium longum의 배양 증대와 저장 안정성

  • Lee, Gi-Yong;Yu, Won-Gyu;Kim, Ji-Yeon;Heo, Tae-Ryeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.203-206
    • /
    • 2000
  • Calcium carbonate $(CaCO_3)$ bead immobilized with alginate were developed as buffer system to enhance the cultivation efficiency of bifidobacteria. When Bifidobacteriuim longum KCTC 3128 and HLC 3742 were independently cultivated in 2.5-liter fermenter buffered the $CaCO_3$ bead, NaOH, $Na_2CO_3$, and $NH_4OH$. The proliferation of bifidobacteria and their storage stability were higher in culture broth buffered $CaCO_3$ beads than in culture broth buffered with NaOH, $Na_2CO_3$, and $NH_4OH$. Therefore, $CaCO_3$ bead may be useful as a buffer to enhance of the cultivation efficiency and viability of bifidobacteria.

  • PDF

Polydopamine-coated chitosan hydrogels for enzyme immobilization

  • Chang Sup Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.512-518
    • /
    • 2023
  • To address inherent weaknesses such as low mechanical strength and limited enzyme loading capacity in conventional chitosan or alginate beads, an additional step involving the exchange of anionic surfactants with hydroxide ions was employed to prepare porous chitosan hydrogel capsules for enzyme immobilization. Consequently, excellent thermal stability and long-term storage stability were confirmed. Furthermore, coating the porous chitosan hydrogel capsules with polydopamine not only improved mechanical stability but also exhibited remarkable enzyme immobilization efficiency (97.6% for M1-D0.5). Additionally, it was demonstrated that the scope of application for chitosan hydrogel beads, prepared using conventional methods, could be further expanded by introducing an additional step of polydopamine coating. The enzyme immobilization matrix developed in this study can be selectively applied to suit specific purposes and is expected to be utilized as a support for the adsorption or covalent binding of various substances.

Removal of Ammonia-N by Immobilized Nitrifier Consortium (고정화된 질화 세균군에 의한 암모니아성 질소 제거)

  • 서근학;김병진;조문철;조진구;김용하;김성구
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.238-243
    • /
    • 1998
  • Nitrifier consortium immobilized in Ca and Ba-alginate beads were packed into two bioreactors and the performances of bioreactors were evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. The total ammonia nitrogen (TAN) concentration of the influent was continually kept about 2g TAN/㎥. At the HRT of 0.6hr, ammonia nitrogen removal rate of two bioreactors were about 52.6 and 51.0g TAN/$\textrm{m}^3$/day, respectively. At the respect of ammonia nitrogen removal, two bioreactor showed the similar abilities. The second trial with nitrifier consortium immobilized in Ca-alginate bead was carried out to evaluate the ammonia nitrogen removal rate for 35 days. The highest ammonia nitrogen removal rate was 82g TAN/$\textrm{m}^3$ when HRT was about 0.3hr.

  • PDF

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.

Gellan Gum as Immobilization Matrix for Production of Cyclosporin A

  • Survase, Shrikant A.;Annapure, Uday S.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1086-1091
    • /
    • 2010
  • This study explored the use of gellan gum as an immobilization matrix for the production of cyclosporin A (CyA) by immobilized spores and mycelia of Tolypocladium inflatum MTCC 557. Different carriers, such as gellan gum, sodium alginate, celite beads, and silica, were tested as immobilization carriers, along with the role of the carrier concentration, biomass weight, number of spore-inoculated beads, and repeated utilization of the immobilized fungus. The maximum CyA production was 274 mg/l when using gellan gum [1% (w/v)], and a mycelial weight of 7.5% (w/v) supported the maximum production of CyA. Additionally, the addition of a combination of $_L$-valine (6 g/l) and $_L$-leucine (5 g/l) after 48 h of fermentation produced 1,338 mg/l of CyA when using gellan gum. The immobilized mycelia beads were found to remain stable for four repetitive cycles, indicating their potential for semicontinuous CyA production.

Characterization of Immobilized Denitrifying Bacteria Isolated from Municipal Sewage

  • Kim, Joong-Kyun;Kim, Sung-Koo;Kim, Sang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.756-762
    • /
    • 2001
  • As a component for a recirculating aquaculture system, a new strain of denitrifying bacterium was isolated from municipal sewage. The isolate was motile by means of one polar flagellum, catalase-positive, and a Gram-negative rod-shaped cell measuring $0.5-0.6{\mu}m$ in width and $1.3-1.9{\mu}m$ in length. The isolate was identified as Pseudomonas fluorescens and produced dinitrogen gas via the reduction of nitrate. The optimal growth conditions (pH, temperature, carbon source, and C/N ratio) of the isolate were found to be 6.8, $30^{\circ}C$, malate, and 3, respectively. Under optimal growth conditions of P. fluorescens, dinitrogen gas was first detected in the exponential growth phase, then a small amount of nitrite was developed and converted to dinitrogen gas in the stationary phase. Pseudomonas fluorescens cells were immobilized in modified polyvinyl alcohol (PVA) gel beads, and the maximum denitrification rate was measured as $36.6 {\mu}lN_2h^-1$ per bead with an optimum cell loading of $20mg {\mu}l^-1$ and $2\%$ sodium alginate added to the PVA gel. The operating stability of the modified PVA gel beads remained unchanged for up to 43 repeated batches.

  • PDF

고정화 시스템을 이용한 용균효소의 생산

  • 류병호;박종옥;진성현
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.500-506
    • /
    • 1996
  • Bacillus subtilis SH-1 screened from coastal sea water of South Korea was used to produce bacteriolytic enzyme. The production of bacteriolytic enzyme by immobilized cells was investigated. The optimum conditions for the continuous production of the bacteriolytic enzyme using immobilized cells were 2.4 mm diameter of 0.3% alginate beads, 20 ml/h of substrate feeding rate and 20 l/min of aeration rate. A productivity of 76.5 to 88.0 units/ml could be obtained for 25 days by continuous column reactor under the optimum conditions.

  • PDF

Semicontinuous Production of Red Pigment by Immobilized Cells of Bacillus sp BH-99 Using Column Bioreactor

  • Ryu, Beung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.19-22
    • /
    • 2003
  • The semicontinuous production of red pigment by immobilized cells of Bacillus sp. B H-99 was investigated in comparison with free cells. The red pigment produced highest productivity under the conditions of aeration of 0.2 mL/min and 2 mm diameter of gel beads by using 3.0% sodium alginate. Semicontinuous production by immobilized cells showed the highest productivity with replacement of fresh production medium in every 72 h for fourth fermentation cycle following the conditions of red pigment productivity.

The Stabilization of Lactic Acid Bacteria, Bacillus polyfermenticus KJS-2 (유산간균인 Bacillus polyfermenticus KJS-2의 안정화)

  • Kim, Kang-Min;Lee, Jin-Young;Hong, Yong-Geun;Lee, Sang-Kil;Kang, Jae-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.8
    • /
    • pp.1044-1048
    • /
    • 2008
  • Bacillus polyfermenticus KJS-2 (Bp2) was isolated from $Bispan^{(R)}$, a commercially available probiotics consisting of more than 4 strains. The objective of this study was to investigate the effect of three-layer coating on the stabilty of Bp2. Bp2 was microencapsulated with sodium alginate using an air atomizer. The Bp2 loaded pellets were also coated with HFP-chitosan and HPMCP for oral delivery system. When compared to the uncoated Bp2, the survival of the three-layer coated Bp2 increased to approximately 63% (p<0.01) in a 30% ethanol solution, 54% (p<0.05) in an artificial gastric juice (pH 2), and 53% (p<0.05) in the bile acid (pH 5). When coated beads were stored at $100^{\circ}C$ and $130^{\circ}C$, Bp2 in coated beads was very stable (p<0.01) compared to uncoated Bp2.

Hydrogels with diffusion-facilitated porous network for improved adsorption performance

  • Pei, Yan-yan;Guo, Dong-mei;An, Qing-da;Xiao, Zuo-yi;Zhai, Shang-ru;Zhai, Bin
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2384-2393
    • /
    • 2018
  • Porous alginate-based hydrogel beads (porous ABH) have been prepared through a facile and sustainable template-assisted method using nano-calcium carbonate and nano-$CaCO_3$ as pore-directing agent for the efficient capture of methylene blue (MB). The materials were characterized by various techniques. The sorption capacities of ABH towards MB were compared with pure sodium alginate (ABH-1:0) in batch and fixed-bed column adsorption studies. The obtained adsorbent (ABH-1:3) has a higher BET surface area and a smaller average pore diameter. The maximum adsorption capacity of ABH-1:3 obtained from Langmuir model was as high as $1,426.0mg\;g^{-1}$. The kinetics strictly followed pseudo-second order rate equation and the adsorption reaction was effectively facilitated, approximately 50 minutes to achieve adsorption equilibrium, which was significantly shorter than that of ABH-1:0. The thermodynamic parameters revealed that the adsorption was spontaneous and exothermic. Thomas model fitted well with the breakthrough curves and could describe the dynamic behavior of the column. More significantly, the uptake capacity of ABH-1:3 was still higher than 75% of the maximum adsorption capacity even after ten cycles, indicating that this novel adsorbent can be a promising adsorptive material for removal of MB from aqueous solution under batch and continuous systems.