• Title/Summary/Keyword: Alginate Bead

Search Result 139, Processing Time 0.024 seconds

Pseudomonas aeruginosa BYK-2의 균체고정화법을 이용한 생물유화제의 생산

  • Jeong, Hye-Seong;Kim, Hak-Ju;Ha, Sun-Deuk;Hwang, Seon-Hui;Gu, Heon-Seo;Gong, Jae-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.378-381
    • /
    • 2000
  • The optimal conditions and properties for the immobilization of marine bacterium Pseudomonas aeruginosa BYK-2 have been determined. For the high productioon of biosurfactant, Na-alginate, PVA, modified PVA were used as a carrier. The optimal emulsifying activity on immobilized Pseudomonas aeruginosa BYK-2 showed 1036Unit (about 2.2g/L biosurfactant) in Basal salt medium(B.S.M.) at $25^{\circ}C$, 100rpm. Ca-alginate was selected the optimal bead among PVA, modified PVA and Ca-alginate. The optimal cell load in alginate bead was 10 gCWW/100g carrier. As the results of incubation of immobilized 5g Ca-alginate bead (conditions; 3% alginate, bead diameter: 2.3mm, 10% cell load) in 50m1 production medium, The emulsifying activity of 1407Unit, about 3.0g/L biosurfactant was obtained from immobilized cell after cultivation of 92hr at $25^{\circ}C$, 100rpm.

  • PDF

The Effect of Sodium Alginate Coating on the Storage Stability and Dissolution Rate of Enteric Coated Lansoprazole (알긴산 나트륨이 장용코팅된 란소프라졸 제제의 저장안정성 및 용출률에 미치는 영향에 관한 연구)

  • Kim, Jung-Hoon;Oh, Jung-Min;Khang, Gil-Son;Jeong, Je-Kyo;Lee, Jung-Sik;Jeung, Sang-Young;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2002
  • Lansoprazole, pharmaceutics for acid-related diseases, is unstable in low pH environments and generally coated with enteric polymer to obtain gastroresistance in stomach. Because its storage stability is influenced by acidic substitutes of enteric polymer, alkaline chemicals wεre generally addεd to dosage form as a stabilizer. In this experience, we coated lansoprazole bead with sodium alginate and evaluated the effect of bead size and sodium alginate coating on the storage stability and dissolution profile of lansoprazole. Sodium alginate solution containing lansoprazole was sprayed as a droplet into 3% (w/v) $CaCl_2$ solution and the resultant bead was coated with starch, sodium alginate, and hydroxypropyl methylcellulose phthalate. The content of lansoprazole granule not coated with sodium alginate decreased to 57.96% of initial content when stored at a severe condition for 4 weeks, but that of lansoprazole granule coated with sodium alginate before enteric coating decreased little and as the thickness of sodium alginate film increased, the content of bead didn't decreased for 4 weeks. Sodium alginate film also improved the gastroresistance without much influencing the maximum dissolution rate.

Improvement of Bifidobacterium longum Stability Using Cell-Entrapment Technique

  • Woo, Chang-Jae;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.132-139
    • /
    • 1999
  • A cell-entrapment technique using compressed air was applied to Bifidobacterium longum KCTC 3128 for the improvement of bifidobacteria viability. The main cell-entrapment matrix used was alginate, and viability improvement of the B. longum entrapped in alginate lattices was monitored along with the effects of other additional biopolymers. A prerequisite for acquiring consistent results was the uniformity of bead size and cell distribution which was achieved by using compressed air and mixing the cell suspension with sterilized alginate powder, respectively. The viability losses of the B. longum entrapped in alginate beads in the presence of three different substances logarithmically increased in relation to the reaction time, and proportionately decreased with an increased alginate concentration and bead diameter. The strongest improvement in B. longum viability was exhibited with a bead containing 3% alginate and 0.15% xanthan gum.

  • PDF

Sphericity Optimization of Calcium Alginate Gel Beads and the Effects of Processing Conditions on Their Physical Properties

  • Woo, Jin-Wook;Rob, Hye-Jin;Park, Hyun-Duck;Ji, Cheong-Il;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.715-721
    • /
    • 2007
  • In this study, the sphericity of calcium alginate gel beads was optimized using response surface methodology. The optimum conditions for bead sphericity were a concentration of 2.24% sodium alginate, a flow rate of 0.059 mL/sec for the sodium alginate solution, and a 459 rpm rotation for the calcium chloride solution. The predicted and experimental bead sphericities under the optimum conditions were 94.5 and 96.7%, respectively, showing close agreement. We also investigated the processing condition effects for the physical properties of the optimized calcium alginate gel beads. Immersion in hot water slightly decreased bead size and rupture strength. NaCl treatment increased bead size and decreased rupture strength. While the pH of the calcium chloride solution had little effect on bead sphericity, the bead sizes and gel strengths decreased with longer times in each pH solution. The beads coated with pectin and glucomannan showed no significant changes in sphericity, but their sizes decreased with time. The coated beads showed higher rupture strengths than the uncoated beads.

Preparation and Release Characterization of Sodium Alginate Bead Containing Phytoncide Oil (편백정유를 함유한 알지네이트 비드의 제조 및 방출 특성)

  • Yoon, Doo-Soo;Lee, Eung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.557-562
    • /
    • 2018
  • High molecular weight sodium alginate (HMWSA)/low molecular weight sodium alginate (LMWSA) microcapsules containing phytoncide oil were prepared with different LMWSA contents. The effects of the stirring rate and ratio of HMWSA/LMWSA on the diameter and morphology of the phytoncide/alginate beads were investigated by optical microscopy and the release behaviors of phytoncide oil from the phytoncide/alginate beads were characterized by UV/Vis. spectrophotometry. The mean particle size of the phytoncide/alginate beads decreased with increasing stirring rate and concentration of the calcium chloride solution. The surface morphology of the phytoncide/alginate beads changed from smooth surfaces to skin-like rough surfaces with increasing LMWSA content. These results were due mainly to the increased hydrophilic groups at the bead surface, resulting in an increase in the release rate of phytoncide oil in the phytoncide/alginate beads.

Immobilization of Microorganisms - Part 1. Preparation of Immobilized Lactobacillus bulgaricus - (미생물(微生物) 고정화(圖定化)에 관한 연구(硏究) - 제1보(第1報). Lactobacillus 균(菌)의 고정화조건(圖定化條件) -)

  • Lee, Kang-Heup
    • Applied Biological Chemistry
    • /
    • v.24 no.2
    • /
    • pp.149-152
    • /
    • 1981
  • The immobilization of Lactobacillus bulgaricus was investigated by various method, e.g. by use of polyacrylamide gel and Al-, Ca-, Fe- or Mg-alginate beads, and the most active immobilized cells were obtained by entrapment in a Ca-alginate beads. These immobilized microbial cells, when introduced into 4.5% lactose solution and whey solution showed maximum relative activity of 28% or lactose solution and 18% for whey solution as measured against the native microbial reference standard (100).

  • PDF

Effect of Biochar bead on Adsorption of Heavy Metals

  • Kim, Ho-Jin;Lee, Hochul;Kim, Hyuck-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.351-355
    • /
    • 2014
  • In recent years, biochar has received much attention as soil amendment, enhancing soil fertility and reducing toxicity of heavy metals with its large specific surface area and high pH. Biochar has also the effect of alleviating global warming by carbon sequestration from recycling organic wastes by pyrolysis. However, scattering of fine particles of biochar is a hindrance to expand its use from human health point-of-view. Alginate, a natural polymer without toxicity, has been used for capsulation and hydrogel fabrication due to its cross-linking nature with calcium ion. In this study, the method of cross-linkage between alginate and calcium ion was employed for making dust-free biochar bead. Then an equilibrium adsorption experiment was performed for verifying the adsorption effect of biochar bead on heavy metals (cadmium, copper, lead, arsenic, and zinc). Results showed that biochar bead had effects on adsorbing heavy metals, especially lead, except arsenic.

Preparation of Alginate-fibroin Beads with Diverse Structures (다양한 구조를 가진 알긴산-피브로인 비드 제조)

  • Lee, Jin-Sil;Lee, Shin-Young;Hur, Won
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.422-426
    • /
    • 2011
  • Alginate bead has been supplemented with various polymers to control permeability and to enhance mechanical strength. In this report, fibroin-reinforced alginate hydrogel was prepared, in which spatial localization of fibroin molecules was investigated. Confocal laser scanning microscopy revealed that fibroin molecules formed a fibrous network in the alginate-fibroin beads, which was expected to enhance mechanical strength as same as in many composite materials. Uniaxial compression test showed that fibroin-reinforced alginate beads had increased mechanical strength only after methanol treatment that caused ${\beta}$-sheet formation among fibroin molecules. Simultaneous curing and dialysis of alginate beads were carried out to remove excesscalcium but to retain fibroin in the dialysis chamber, which fabricated beads without internal fibrous fluorescent stains. Fibroin molecules were only found beneath the surface of the beads. The fibroin-diffused shell was further processed to form a thick wall after drying or was mobilizedto the centre of the bead by methanol treatment. Accordingly, the structure analyses provide processing methods of fibroin to form a wall or center clumps, which could be applied to design controlled delivery device.

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Alginate-Microfibers Produced by Self-Assembly in Cell Culture Medium

  • Park, Jeong-Hui;Shin, Ueon-Sang;Kim, Hae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.431-433
    • /
    • 2011
  • Alginate microfibers were fabricated by self assembly of alginate monomers exuded from alginate beads (~2 mm in diameter) containing calcium phosphate. Upon incubation of the beads in cell culture medium at $37^{\circ}C$ for a few days, fibers with a diameter of about $7{\mu}m$ started to sprout from the bead surface, and these grew up to about 10 mm in length, resulting in the beads being covered with fiber forests similar to chestnut bur. The combined system of the alginatebased microfiber forest and bead is considered to be useful as a novel 3-dimensional scaffold for cell culture and tisssue growth.