• Title/Summary/Keyword: Algebraic method

Search Result 613, Processing Time 0.024 seconds

Numerical Studies of Transient Opposed-Flow Flames using Adaptive Time Integration

  • Im, Hong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.103-112
    • /
    • 2000
  • Numerical simulations of unsteady opposed-flow flames are performed using an adaptive time integration method designed for differential-algebraic systems. The compressibility effect is considered in deriving the system of equations, such that the numerical difficulties associated with a high-index system are alleviated. The numerical method is implemented for systems with detailed chemical mechanisms and transport properties by utilizing the Chemkin software. Two test simulations are performeds hydrogen/air diffusion flames with an oscillatory strain rate and transient ignition of methane against heated air. Both results show that the rapid transient behavior is successfully captured by the numerical method.

  • PDF

Solution method of the uncapacitated facility location problem using GAMS and Benders' decomposition approach (저장능력이 무한대인 장소입지문제에 벤더즈 분해기법과 GAMS의 적용)

  • 이상진
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.63-75
    • /
    • 1995
  • The uncapacitated facility location problem considered here is to determine facility location sites, minimizing the total cost of establishing facilities and serving customer demand points which require primary and back-up services. To solve this problem effectively, we propose two things in this study. First, we propose an idea of Benders' decomposition approach as a solution method of the problem. Second, we implement the problem on GAMS. Using GAMS (general Algebraic Modeling System) can utilize an mixed-integer programming solver such as ZOOM/XMP and provide a completely general automated implementation with a proposed solution method.

  • PDF

Accelerated reasoning method for fuzzy control (퍼지제어를 위한 가속화 추론 방법)

  • 남세규;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1058-1062
    • /
    • 1993
  • A fuzzy reasoning method is proposed for the implementation of control systems based on non-fuzzy microprocessors. The essence of the proposed method is to search the local active miles instead of the global rule base. Thus the reasoning is conveniently performed on a master cell as a fuzzy accelerating kernel, which is transformed from an active fuzzy cell. The interpolative reasoning is simplified via adopting the algebraic product of fulfillment for the conditional connective AND and the weighted average for the rule sentence connective ALSO.

  • PDF

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

JACOBI DISCRETE APPROXIMATION FOR SOLVING OPTIMAL CONTROL PROBLEMS

  • El-Kady, Mamdouh
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.99-112
    • /
    • 2012
  • This paper attempts to present a numerical method for solving optimal control problems. The method is based upon constructing the n-th degree Jacobi polynomials to approximate the control vector and use differentiation matrix to approximate derivative term in the state system. The system dynamics are then converted into system of algebraic equations and hence the optimal control problem is reduced to constrained optimization problem. Numerical examples illustrate the robustness, accuracy and efficiency of the proposed method.

A NOTE ON THE PAPER ENTITLED SIXTEENTH-ORDER METHOD FOR NONLINEAR EQUATIONS

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.359-365
    • /
    • 2012
  • The purpose of this paper is to provide some corrections regarding algebraic flaws encountered in the paper entitled "Sixteenth-order method for nonlinear equations" which was published in January of 2010 by Li et al.[9]. Further detailed comments on their error equation are stated together with convergence analysis as well as high-precision numerical experiments.

ON ASYMPTOTIC METHOD IN CONTACT PROBLEMS OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

  • Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.261-275
    • /
    • 2002
  • Besides asymptotic method, the method of orthogonal polynomials has been used to obtain the solution of the Fredholm integral equation. The principal (singular) part of the kerne1 which corresponds to the selected domain of parameter variation is isolated. The unknown and known functions are expanded in a Chebyshev polynomial and an infinite a1gebraic system is obtained.

Nonrelativistic Solutions of Morse Potential from Relativistic Klein-Gordon Equation

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3573-3578
    • /
    • 2010
  • Recently it is suggested that it may be possible to obtain the approximate or exact bound state solutions of nonrelativistic Schr$\ddot{o}$dinger equation from relativistic Klein-Gordon equation, which seems to be counter-intuitive. But the suggestion is further elaborated to propose a more detailed method for obtaining nonrelativistic solutions from relativistic solutions. We demonstrate the feasibility of the proposed method with the Morse potential as an example. This work shows that exact relativistic solutions can be a good starting point for obtaining nonrelativistic solutions even though a rigorous algebraic method is not found yet.

Interactive System of Computational Grid Generation for Aerodynamic Design of Axial Flow Compressors (축류압축기의 공력설계를 위한 대화형 계산격자점 생성 프로그램 개발)

  • Chung, Hee-Taeg
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.7-16
    • /
    • 1998
  • An interactive mode of grid generation system has been developed for a Navier-Stokes design procedure of axial flow compressors. The present grid generator adopts the multiblock H-grid structure, which simplifies the creation of computational grids about complex turbomachinery geometries and facilitate the manipulation of multiple grid blocks for multirow flow fields. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The system consists of four separated modules, which are linked together with a common graphical user interface. The system input is made of the results of the preliminary design. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the two-or three-dimensional flow simulation inside the blade passage. Application to the blade design of the LP compressor was demonstrated to be very reliable and practical in support of design activities. This customized system are coupled strongly with the design procedure of the turbomachinery cascades using the Navier-Stokes technique.

  • PDF

Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves (홈이 회전하는 빗살무늬 저널 베어링의 안정성 해석)

  • 윤진욱;장건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic Journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.