• Title/Summary/Keyword: Algebraic integers

Search Result 22, Processing Time 0.018 seconds

RESULTS ON THE ALGEBRAIC DIFFERENTIAL INDEPENDENCE OF THE RIEMANN ZETA FUNCTION AND THE EULER GAMMA FUNCTION

  • Xiao-Min Li;Yi-Xuan Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1651-1672
    • /
    • 2023
  • In 2010, Li-Ye [13, Theorem 0.1] proved that P(ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), Γ"(z)) ≢ 0 in ℂ, where m is a non-negative integer, and P(u0, u1, . . . , um, v0, v1, v2) is any non-trivial polynomial in its arguments with coefficients in the field ℂ. Later on, Li-Ye [15, Theorem 1] proved that P(z, Γ(z), Γ'(z), . . . , Γ(n)(z), ζ(z)) ≢ 0 in z ∈ ℂ for any non-trivial distinguished polynomial P(z, u0, u1, . . ., un, v) with coefficients in a set Lδ of the zero function and a class of nonzero functions f from ℂ to ℂ ∪ {∞} (cf. [15, Definition 1]). In this paper, we prove that P(z, ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), . . . , Γ(n)(z)) ≢ 0 in z ∈ ℂ, where m and n are two non-negative integers, and P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is any non-trivial polynomial in the m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromorphic functions of order less than one, and the polynomial P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished polynomial in the n + 1 variables v0, v1, . . . , vn. The question studied in this paper is concerning the conjecture of Markus from [16]. The main results obtained in this paper also extend the corresponding results from Li-Ye [12] and improve the corresponding results from Chen-Wang [5] and Wang-Li-Liu-Li [23], respectively.

Hong Gil Ju(洪吉周)'s Algebra (홍길주(洪吉周)의 대수학(代數學))

  • Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, we investigate the part dealing with algebra in Hong Gil Ju's GiHaSinSul to analyze his algebraic structure. The book consists of three parts. In the first part SangChuEokSan, he just renames Die jie hu zheng(疊借互徵) in Shu li jing yun to SangChuEokSan and adds a few examples. In the second part GaeBangMongGu, he obtains the following identities: $$n^2=n(n-1)+n=2S_{n-1}^1+S_n^0;\;n^3=n(n-1)(n+1)+n=6S_{n-1}^2+S_n^0$$; $$n^4=(n-1)n^2(n+1)+n(n-1)+n=12T_{n-1}^2+2S_{n-1}^1+S_n^0$$; $$n^5=2\sum_{k=1}^{n-1}5S_k^1(1+S_k^1)+S_n^0$$ where $S_n^0=n,\;S_n^{m+1}={\sum}_{k=1}^nS_k^m,\;T_n^1={\sum}_{k=1}^nk^2,\;and\;T_n^2={\sum}_{k=1}^nT_k^1$, and then applies these identities to find the nth roots $(2{\leq}n{\leq}5)$. Finally in JabSwoeSuCho, he introduces the quotient ring Z/(9) of the ring Z of integers to solve a system of congruence equations and also establishes a geometric procedure to obtain golden sections from a given one.

  • PDF