• 제목/요약/키워드: Algebraic Geometry codes

검색결과 5건 처리시간 0.018초

FAST UNIQUE DECODING OF PLANE AG CODES

  • Lee, Kwankyu
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.793-808
    • /
    • 2013
  • An interpolation-based unique decoding algorithm of Algebraic Geometry codes was recently introduced. The algorithm iteratively computes the sent message through a majority voting procedure using the Gr$\ddot{o}$bner bases of interpolation modules. We now combine the main idea of the Guruswami-Sudan list decoding with the algorithm, and thus obtain a hybrid unique decoding algorithm of plane AG codes, significantly improving the decoding speed.

초타원 곡선위에서 생성된 대수기하 부호를 이용한McEliece유형의 공개키 암호시스템 (McEliece Type PKC Based on Algebraic Geometry Code over Hyperelliptic Curve)

  • 강보경;한상근
    • 정보보호학회논문지
    • /
    • 제12권1호
    • /
    • pp.43-54
    • /
    • 2002
  • McEliece introduced a public-key cryptosystem based on Algebraic codes, specially binary classical Goppa which have a good decoding algorithm and vast number of inequivalent codes with given parameters. And the advantage of this system low cost of their encryption and decryption procedures compared with other public-key systems specially RSA, ECC based on DLP(discrete logarithm problem). But in [1], they resent new attack based on probabilistic algorithm to find minimum weight codeword, so for a sufficient security level, much larger parameter size [2048, 1608,81]is required. Then the big size of public key make McEliece PKC more inefficient. So in this paper, we will propose New Type PKC using q-ary Hyperelliptic code so that with smaller parameter(1 over 3) but still work factor as hi인 as McEliece PKC and faster encryption, decryption can be maintained.

Novel Class of Entanglement-Assisted Quantum Codes with Minimal Ebits

  • Dong, Cao;Yaoliang, Song
    • Journal of Communications and Networks
    • /
    • 제15권2호
    • /
    • pp.217-221
    • /
    • 2013
  • Quantum low-density parity-check (LDPC) codes based on the Calderbank-Shor-Steane construction have low encoding and decoding complexity. The sum-product algorithm(SPA) can be used to decode quantum LDPC codes; however, the decoding performance may be significantly decreased by the many four-cycles required by this type of quantum codes. All four-cycles can be eliminated using the entanglement-assisted formalism with maximally entangled states (ebits). The proposed entanglement-assisted quantum error-correcting code based on Euclidean geometry outperform differently structured quantum codes. However, the large number of ebits required to construct the entanglement-assisted formalism is a substantial obstacle to practical application. In this paper, we propose a novel class of entanglement-assisted quantum LDPC codes constructed using classical Euclidean geometry LDPC codes. Notably, the new codes require one copy of the ebit. Furthermore, we propose a construction scheme for a corresponding zigzag matrix and show that the algebraic structure of the codes could easily be expanded. A large class of quantum codes with various code lengths and code rates can be constructed. Our methods significantly improve the possibility of practical implementation of quantum error-correcting codes. Simulation results show that the entanglement-assisted quantum LDPC codes described in this study perform very well over a depolarizing channel with iterative decoding based on the SPA and that these codes outperform other quantum codes based on Euclidean geometries.

대수기하 부호를 이용한 공개키 암호 (A Public Key Encryption Scheme Using Algebraic-Geometry Codes)

  • 이정근;김재헌;박상우
    • 정보보호학회논문지
    • /
    • 제15권6호
    • /
    • pp.119-125
    • /
    • 2005
  • 본 논문에서는 새로운 부호 기반 공개키 암호 스킴을 제안한다. 제안된 스킴은 Eurcrypt 2003에서 제안된 Augot-Finiasz 스킴을 수정한 것이다. Reed-Solomon 부호를 일반적인 대수기하 부호로 교체하고 복호화에서는 Guruswami-Sudan 복호 알고리즘을 사용한다. 본 암호 스킴은 Augot-Finiasz 스킴의 약점인 Coron의 공격이나 Kiayias-Yung의 공격에 대한 취약성을 가지지 않는다. Augot-Finiasz 스킴에서와 같은 기본적인 분석을 통해 Augot-Finiasz 스킴의 제안 논문에서 제시하였던 수준의 키 크기 대비 안전성을 가짐을 주장한다.

UNIQUE DECODING OF PLANE AG CODES REVISITED

  • Lee, Kwankyu
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.83-98
    • /
    • 2014
  • We reformulate an interpolation-based unique decoding algorithm of AG codes, using the theory of Gr$\ddot{o}$bner bases of modules on the coordinate ring of the base curve. The conceptual description of the reformulated algorithm lets us better understand the majority voting procedure, which is central in the interpolation-based unique decoding. Moreover the smaller Gr$\ddot{o}$bner bases imply smaller space and time complexity of the algorithm.