• Title/Summary/Keyword: Algebraic Formalism

Search Result 6, Processing Time 0.019 seconds

ALGEBRAIC CHARACTERIZATION OF GENERIC STRONGLY SEMI-REGULAR RATIONAL PH PLANE CURVES

  • KIM GWANG-IL
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.241-251
    • /
    • 2005
  • In this paper, we introduce a new algebraic method to characterize rational PH plane curves. And using this method, we study the algebraic characterization of generic strongly regular rational plane PH curves expressed in the complex formalism which is introduced by R.T. Farouki. We prove that generic strongly semi-regular rational PH plane curves are completely characterized by solving a simple functional equation H(f, g) = $h^2$ where h is a complex polynomial and H is a bi-linear operator defined by H(f, g) = f'g - fg' for complex polynomials f,g.

Development of an object-oriented model management framework for computer executable algebraic modeling languages (최적화 모델링 언어를 위한 객체 지향 모형 관리 체계의 개발)

  • 허순영
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.43-63
    • /
    • 1994
  • A new model management framework is proposed to accommodate wide-spreading algebraic modeling languages (AMLs), and to facilitate a full range of model manipulation functions. To incorporate different modeling conventions of the leading AMLs (AMPL, GAMS, and SML) homogeneously, generic model concepts are introduced as a conceptual basis and are embodied by the structural and operational constructs of an Object-Oriented Database Management System(ODBMS), enabling the framework to consolidate components of DSSs(database, modelbase, and associated solvers) in a single formalism effectively. Empowered by a database query language, the new model management framework can provide uniform model management commands to models represented in different AMLs, and effectively facilitate integration of the DSS components. A prototype system of the framework has been developed on a commercial ODBMS, ObjectStore, and a C++ programming language.

  • PDF

Novel Class of Entanglement-Assisted Quantum Codes with Minimal Ebits

  • Dong, Cao;Yaoliang, Song
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.217-221
    • /
    • 2013
  • Quantum low-density parity-check (LDPC) codes based on the Calderbank-Shor-Steane construction have low encoding and decoding complexity. The sum-product algorithm(SPA) can be used to decode quantum LDPC codes; however, the decoding performance may be significantly decreased by the many four-cycles required by this type of quantum codes. All four-cycles can be eliminated using the entanglement-assisted formalism with maximally entangled states (ebits). The proposed entanglement-assisted quantum error-correcting code based on Euclidean geometry outperform differently structured quantum codes. However, the large number of ebits required to construct the entanglement-assisted formalism is a substantial obstacle to practical application. In this paper, we propose a novel class of entanglement-assisted quantum LDPC codes constructed using classical Euclidean geometry LDPC codes. Notably, the new codes require one copy of the ebit. Furthermore, we propose a construction scheme for a corresponding zigzag matrix and show that the algebraic structure of the codes could easily be expanded. A large class of quantum codes with various code lengths and code rates can be constructed. Our methods significantly improve the possibility of practical implementation of quantum error-correcting codes. Simulation results show that the entanglement-assisted quantum LDPC codes described in this study perform very well over a depolarizing channel with iterative decoding based on the SPA and that these codes outperform other quantum codes based on Euclidean geometries.

Research of Controlled Motion of Dual Fingers with Soft-Tips Grasping (Soft-Tip을 가진 Dual Finger의 파지운동제어에 관한 연구)

  • 박경택;양순용;한현용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.670-673
    • /
    • 2000
  • This paper attempt analysis and computer simulation of dynamics of a set of dual multi-joint fingers with soft-deformable tips which are grasping. Firstly, a set of differential equation describing dynamics of the fingers and object together with geometric constraint of tight area-contacts is formulated by Euler-Lagrange's formalism. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Finally, simulation results are shown and the effects of geometric constraints of area-contact is discussed.

  • PDF

Automatic Generation of Dynamic Equations for Robotic Manipulatorsa (로보트 매니퓨레이터의 동적방정식의 자동 생성에 관한 연구)

  • 원태현;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.19-22
    • /
    • 1987
  • A program is developed for generations the dynamic equations for robotic manipulators using the symbolic language muSIMP/MATH. The muSIMP/MATH is a LISP-based computer algebra package, devoted to the manipulation of algebraic expressions including number, variables, functions, and matrix. The muSIMP/MATH can operate on IBM-PC compatibles with MS-DOS. The program is developed, on the e formalism. This is program is applicable to the manipulators of any number of degrees of freedom, maximum six degree of freedom in this program. To control robotic manipulators by using dynamic equation is required a symbolic equations. The generated dynamic equation can be applied directly to the robotic manipulators, for the generated dynamic equation is a reduced form of symbolic expression.

  • PDF

Multidimensional Ring-Delta Network: A High-Performance Fault-Tolerant Switching Networks (다차원 링-델타 망: 고성능 고장감내 스위칭 망)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, a high-performance fault-tolerant switching network using a deflection self-routing was proposed. From an abstract algebraic analysis of the topological properties of the Delta network, which is a baseline switching network, we derive the Multidimensional Ring-Delta network: a multipath switching network using a deflection self-routing algorithm. All of the links including already existing links of the Delta network are used to provide the alternate paths detouring faulty/congested links. We ran a simulation analysis under the traffic loads having the non-uniform address distributions that are usual in Internet. The throughput of $1024\;{\times}\;1024$ switching network proposed is better than that of the 2D ring-Banyan network by 13.3 %, when the input traffic load is 1.0 and the hot ratio is 0.9. The reliability of $64\;{\times}\;64$ switching network proposed is better than that of the 2D ring-Banyan network by 46.6%.