• Title/Summary/Keyword: Algal control

Search Result 216, Processing Time 0.025 seconds

Evaluation of Algal Growth Limiting Factor in the Nakdong River by MBOD Method (MBOD법에 의한 낙동강의 조류증식 제한인자 추정)

  • Song, Kyo-Ook;Seo, In-Suk;Shin, Sung-Kyo;Lee, Suk-Mo;Park, Chung-Kil
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.83-83
    • /
    • 1995
  • The increase of population and industrial activities had brought into eutrophication in the Nakdong river. A remarkable acceleration of eutrophication brought about serious problems for water supply. Therefore, for the purpose of conservation of water quality in the Nakdong river it is necessary to control nutrients. MBOD method was use to evaluate algal growth limiting factor and algal growth potential in the Nakdong river from June to August 1994. The modified biochemical oxygen demand(MBOD) depends on the amount of available inorganic nutrient and organic substrate during 5 day incubation in the dark at 20$^{circ}C$. The MBOD assay depends on inorganic nutrients such as P and N as well as reduced carbon and called the MBOD, the MBOD-P, and the MBOD-N, respectively. The results of bioassay by MBOD(Modified BOD) method showed that the MBOD, MBOD-P and MBOD-N value were found to be in the ranges of 3.8∼96.0 mg$O_2$/l, 5.6∼94.0 mg$O_2$/l and 42.0∼220 mg$O_2$/l, respectively. And the the bioassay value was found to be the highest in Koryong area and the lowest in Waekwan area throughout the Nakdong river. The variations of MBOD-P and MBOD-N value showed similar tendencies to the variations of phosphorus and nitrogen value, respectively. By MBOD method, the relationships of MBOD, MBOD-P and MBOD-N value were MBOD ≒ MBOD-P 《 MBOD-N. The MBOD value was nearly equal to the MBOD-P value, and the MBOD-N value was 3 to 20 times more than the MBOD-P value, approximately. Therefore, in the Nakdong river, phosphorus was the limiting factor for algal growth during summer season. The algal growth potential as the concentration of chlorophyll-a in the summer was maximum 5 times more than standing crop as it.

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network (신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구)

  • Kim, Mi Eun;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.697-706
    • /
    • 2013
  • In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

Algal Growth Inhibition Activity of Domestic Plants and Minerals Using Simple Extraction Method (국내산 광물 및 식물의 단순 추출물을 이용한 조류 성장 억제능 평가)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Kim, Kun-Hee;Yu, Young-Hun;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2010
  • A simple extraction method was applied to control four selected cyanobacteria, solitary (SMA) and colonial Microcystis aeruginosa (CMA), and green algae, Scenedesmus quadricauda and Chlorella vulgaris using a domestic plant and mineral. Three kinds of concentrations (1, 5, and 10 mg $L^{-1}$) of three fresh plants Camellia sinensis, Quercus acutissima, and Castanea crenata, three minerals loess, quartz porphyry, and natural zeolite, and plant-mineral composite, totally seven materials were prepared with the simple extraction processes: drying and grinding of material, water-extraction by high temperature-sonication and filtering. Cyanobacteria SMA and CMA (over 60% of control) were effectively inhibited with the low concentration (1 mg $L^{-1}$) of plants Q. acutissima and C. crenata and natural zeolite, while green alga S. quadricauda (below 50% of control) also retarded in growth. Low concentrations (1 mg $L^{-1}$) of C. sinensis effectively increased the growth of C. vulgaris, while loess also induced the algal growth of S. quadricauda. Therefore, our results indicate that crude extract of domestic plants, Q. acutissima and C. crenata can be also useful to control the cyanobacterial bloom in eutrophic lake, whereas C. sinensis and loess may be a good growth factor or useful media for the algal mass culture.

Effect of Pollutants Control Measures in So-oak Watershed on the Control of Algae Growth in Daecheong Reservoir (소옥천 유역의 오염제어 대책에 따른 대청호 조류저감 효과 분석)

  • Park, Hyung Seok;Yoon, Sung Wan;Chung, Se Woong;Hwang, Hyun Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.4
    • /
    • pp.248-260
    • /
    • 2016
  • This study was aimed to assess the effect of diverse pollutants control measures suggested in the Chuso basin and its upstream of So-oak stream watershed where are the most concerned areas on the control of algal bloom occurring in Daecheong Reservoir. The control measures were classified as watershed measures and in-reservoir measures, and their effects were simulated using a two-dimensional hydrodynamic and water quality model. The watershed measures were made up of 1) point sources control, non-point sources control, and their combinations. The in-reservoir measures were supposed to treat sediment at Chuso basin and to install a phosphorus elimination plant (PEP) at the end of So-oak stream. The results showed that the effect of each measure was influenced by the hydrological condition of the year. In wet year, as the contribution of non-point sources increased, the non-point source control measures (NPS1~NPS4) showed more effective compared to other measures, while, the PEP system to eliminate phosphorus from So-oak stream showed better performance in dry year. In particular, the scenario of NPS1, in which all livestock manures were collected and treated but only chemical fertilizers (NPS1) were used for agriculture fields, showed the best performance for the control of algal bloom in Chuso basin among the watershed measures.

Inhibitory Effect of Microcystis aeruginosa (Cyanophyceae) Growth by Plants in vitro (식물체를 이용한 조류증식억제 효과)

  • Jheong, Weon-Hwa;Byeon, Myeong-Seop;Jun, Sun-Ok;Lim, Byung-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.136-144
    • /
    • 2000
  • M. aeruginosa isolated from Lake Paldang was cultured in CB medium, and then each wet plants put into the cultured medium at a rate of 0.5 g and 2.5 g wet wt/l. There was slight inhibition by the input of cattail and iris of each 0.5 g wet wt/l cultured medium, but showed no reduction in algal growth in other flasks. Among the applied plants, ginkgo, pine needles, big cone pine, waterreed and water chestnut had an effect on inhibition of algal growth at the input of 2.5 g wet wt/l. Plants which were dried for 3 days at $50^{\circ}C$ introduced into the testing flask for 10days cultured at dose rates of 2.5 g/l. When chlorophyll a concentration was remarkably high as $802.6\;{\mu}g/l$ after five days, there was noticeably less chlorophyll compared with control at a rate of 98% by big cone pine, 96% by ginkgo, 95% by pine needles and 86% by rice straw, respectively. To examine the effect of plant extracts on algal growth, big cone pine and water chestnut were put to the amount of 1.25 g liquid extracts/l. Chlorophyll a concentration and cell density decreased to the extent of average 43% as compared with the beginning of experiment, but when concentration of chlorophyll a increased a most high, the inhibition of algal growth by liquid extracts did not affect at all. When a quantity of plant equivalent to 2.5 g liquid extracts/l inhibited the growth of algae by 95% after nine days.

  • PDF

Analysis of Exclusive Causality between Environmental Factors and Cell Number of Cyanobacteria in Guem River (금강 주요지점에서의 환경 인자와 남조류 세포수의 배타적 인과성분석)

  • Kim, Yeonhwa;Lee, EunHyung;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.937-950
    • /
    • 2016
  • Algal blooming in 4 major rivers introduces substantial impacts to water front activity. Concentrations of algae are increasing at major points along the Geum River. Ecosystem food webs can be affected by algal blooming because blue-green algae release toxic materials. Even though there have been many studies on blue-green algae, its causality to environmental factors has not been completely determined yet. This study analyzed the exclusive correlation between various hydrometeorological, water quality, and hydrologic variables and the cell number of cyanobacteria to understand causality of blue-green algae in the Geum River. A prewhitening process was introduced to remove the autocorrelation structure and periodicity, which is useful to evaluate the effective relationship between two time series.

Oomycete pathogens, red algal defense mechanisms and control measures

  • Xianying Wen;Giuseppe C. Zuccarello;Tatyana A. Klochkova;Gwang Hoon Kim
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.203-215
    • /
    • 2023
  • Oomycete pathogens are one of the most serious threats to the rapidly growing global algae aquaculture industry but research into how they spread and how algae respond to infection is unresolved, let alone a proper classification of the pathogens. Even the taxonomy of the genera Pythium and Olpidiopsis, which contain the most economically damaging pathogens in red algal aquaculture, and are among the best studied, needs urgent clarification, as existing morphological classifications and molecular evidence are often inconsistent. Recent studies have reported a number of genes involved in defense responses against oomycete pathogens in red algae, including pattern-triggered immunity and effector-triggered immunity. Accumulating evidence also suggests that calcium-mediated reactive oxygen species signaling plays an important role in the response of red algae to oomycete pathogens. Current management strategies to control oomycete pathogens in aquaculture are based on the high resistance of red algae to abiotic stress, these have environmental consequences and are not fully effective. Here, we compile a revised list of oomycete pathogens known to infect marine red algae and outline the current taxonomic situation. We also review recent research on the molecular and cellular responses of red algae to oomycete infection that has only recently begun, and outline the methods currently used to control disease in the field.

Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers

  • Lee, Soon Jeong;Hwang, Mi Sook;Park, Myoung Ae;Baek, Jae Min;Ha, Dong-Soo;Lee, Jee Eun;Lee, Sang-Rae
    • ALGAE
    • /
    • v.30 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Pythium species (Pythiales, Oomycetes) are well known as the algal pathogen that causes red rot disease in Pyropia / Porphyra species (Bangiales, Rhodophyta). Accurate species identification of the pathogen is important to finding a scientific solution for the disease and to clarify the host-parasite relationship. In Korea, only Pythium porphyrae has been reported from Pyropia species, with identifications based on culture and genetic analysis of the nuclear internal transcribed spacer (ITS) region. Recent fungal DNA barcoding studies have shown the low taxonomic resolution of the ITS region and suggested the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as an alternative molecular marker to identify Pythium species. In this study, we applied an analysis of both the ITS and cox1 regions to clarify the taxonomic relationships of Korean Pythium species. From the results, the two closely related Pythium species (P. chondricola and P. porphyrae) showed the same ITS sequence, while the cox1 marker successfully discriminated P. chondricola from P. porphyrae. This is the first report of the presence of P. chondricola from the infected blade of Pyropia yezoensis in Asia. This finding of the algal pathogen provides important information for identifying and determining the distribution of Pythium species. Further studies are also needed to confirm whether P. chondricola and P. porphyrae are coexisting as algal pathogens of Pyropia species in Korea.

Maximizing Biomass Productivity and $CO_2$ Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide

  • Nayak, Manoranjan;Rath, Swagat S.;Thirunavoukkarasu, Manikkannan;Panda, Prasanna K.;Mishra, Barada K.;Mohanty, Rama C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1260-1268
    • /
    • 2013
  • A series of experiments were carried out with three native strains of microalgae to measure growth rates, biomass, and lipid productivities. Scenedesmus sp. IMMTCC-6 had better biomass growth rate and higher lipid production. The growth, lipid accumulation, and carbon dioxide ($CO_2$) consumption rate of Scenedesmus sp. IMMTCC-6 were tested under different NaOH concentrations in modified BBM. The algal strain showed the maximum specific growth rate (0.474/day), biomass productivity (110.9 mg $l^{-1}d^{-1}$), and $CO_2$ consumption rate (208.4 mg $l^{-1}d^{-1}$) with an NaOH concentration of 0.005 M on the $8^{th}$ day of cultivation. These values were 2.03-, 6.89-, and 6.88-fold more than the algal cultures grown in control conditions (having no NaOH and $CO_2$). The $CO_2$ fixing efficiency of the microalga with other alternative carbon sources like $Na_2CO_3$ and $NaHCO_3$ was also investigated and compared. The optimized experimental parameters at shake-flask scale were implemented for scaling up the process in a self-engineered photobioreactor. A significant increase in lipid accumulation (14.23% to 31.74%) by the algal strain from the logarithmic to stationary phases was obtained. The algal lipids were mainly composed of $C_{16}/C_{18}$ fatty acids, and are desirable for biodiesel production. The study suggests that microalga Scenedesmus sp. IMMTCC-6 is an efficient strain for biodiesel production and $CO_2$ biofixation using stripping solution of NaOH in a cyclic process.

Screening of High Temperature-Tolerant Oleaginous Diatoms

  • Zhang, Lingxiang;Hu, Fan;Wan, Xiu;Pan, Yufang;Hu, Hanhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1072-1081
    • /
    • 2020
  • Screening suitable strains with high temperature adaptability is of great importance for reducing the cost of temperature control in microalgae cultivation, especially in summer. To obtain high temperature-tolerant diatoms, water samples were collected in summer from 7 different regions of China across the Northeast, North and East. A total of 731 water samples was collected and from them 131 diatom strains were isolated and identified based on the 18S rRNA sequences. Forty-nine strains out of the 131 diatoms could survive at 30℃, and 6 strains with relatively high biomass and lipid content at high temperature were selected and were found to be able to grow at 35℃. Cyclotella sp. HB162 had the highest dry biomass of 0.46 g/l and relatively high triacylglycerol (TAG) content of 237.4 mg/g dry biomass. The highest TAG content of 246.4 mg/g dry biomass was obtained in Fistulifera sp. HB236, while Nitzschia palea HB170 had high dry biomass (0.33 g/l) but relatively low TAG content (105.9 mg/g dry biomass). N. palea HB170 and Fistulifera sp. HB236 presented relatively stable growth rates and lipid yields under fluctuating temperatures ranging from 28 to 35℃, while Cyclotella HB162 maintained high lipid yield at temperatures below 25℃. The percentage of saturated fatty acids and monounsaturated fatty acids in all the 6 strains was 84-91% in total lipids and 90-94% in TAGs, which makes them the ideal feedstock for biodiesel.