• Title/Summary/Keyword: Algal concentration

Search Result 357, Processing Time 0.028 seconds

A Study on the Epilithic Algae in a stream drained from Hot Springs (온천 주변 소형하천에 서식하는 부착조류군집에 관한 연구)

  • 최환석;유춘만
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.131-136
    • /
    • 1998
  • Attached algal community and several physico-chemicai characters were investigated at Seokjong hot spring in Chollabukdo in February and in April, 1997. The results of physico-chemicai factors are as follows : water temperatures were varied from 6.5$^{\circ}$C to 32.0$^{\circ}$C; pH range was 6.9 to 7.7; The levels of electric conductivity were 105 $\mu$mhos/cm to 477 $\mu$mhos/cm; chemical oxygen demand(COD) range was 1.5 mg/l to 21.2 mg/l; ammonia concentration was 0.20 mg/l to 8.74 mg/l; nitrate concentrations were 0.36 mg/l to 2.43 mg/l; phosphate concentration was N.D. to 0.52 mg/l; sulfur concentration was 14.6 mg/l to 66.1 mg/l. Attacched algal species were identified. Totally, 63 taxa were classified and composed of 4 phylum, 4 class, 10 order, 17 family and 31 genera. The total biomass of attacched algae was $1.036 \times 10^{7}$ cells/l that composed of $5.39 \times 10^{6}$ cells/l of blue-green algae, $4.05 \times 10^{6}$ cells/l of diatom and $0.93 \times 10^{6}$ cells/l of green algae. The succession of dominant species was Synechocystis thermalis. This could be due to the thermal wastewaters. in biotic indices tests, the values of dominance index(DI) were 0.33 to 0.67 in winter, 0.18 to 0.68 in spring. The values of diversity index(H') were 1.44 to 2.69 in winter, 1.62 to 2.89 in spring. And the values of eveness index (J) were 0.31 to 0.61 in winter, 0.37 to 0.65 in spring.

  • PDF

Filtration Rates of Juvenile Purple Clam, Saxidomus purpuratus (Sowerby) Feeding on Red Tide Dinoflagellates

  • Lee, Chang-Hoon;Moon, Seong-Dae;Sung, Chan-Gyoung
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.349-359
    • /
    • 2012
  • The purpose of this study is to compare the clearance rate (CR) and intake rate (IR) of juvenile purple clam, Saxidomus purpuratus when feeding on different unialgal diet of red tide dinoflagellates (RTDs), and to know what is the most important cell characteristic of RTDs to cause the differences in feeding parameters. Experiments were performed to measure the CR and IR of juvenile S. purpuratus as a function of algal concentration when food was either the standard food, Isochrysis galbana or one of 9 RTDs. Patterns of CR with increasing algal concentration were similar among different RTDs. The highest $C_{max}$ was observed when S. purpuratus was feeding on A. affine, while the lowest on C. polykrikoides. The patterns of IR with increasing algal concentration were also similar among different RTDs. However, there were great differences in the maximum value of IR ($I_{max}$) among different RTDs. The highest $I_{max}$ was observed when S. purpuratus was feeding on A. carterae, while the lowest on G. catenatum. Some RTDs similar in size showed different $C_{max}$. Other RTDs different in size showed similar $I_{max}$. Life form of each RTD affected significantly the $I_{max}$, which was higher for single-celled RTDs than chain-forming RTDs. There were no significant differences in feeding parameters between toxic and nontoxic RTDs. Moreover, a toxic dinoflagellate, A. carterae recorded the highest $I_{max}$ among RTDs. The most important characteristic of RTD as a factor affecting the feeding rate of S. purpuratus was life form, not size or toxicity of RTD species.

Removal Efficiency of Cochiodinium polykrikoides by Yellow Loess (황토의 유해성 적조생물 Cochiodinium종의 제거효과)

  • CHOI Hee Gu;KIM Pyoung Soong;LEE Won Chan;YUN Seong Jong;KIM Hak Gyoon;LEE Hung Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.109-113
    • /
    • 1998
  • The clay and yellow loess have capability to adsorb and precipitate particles. The removal efficiencyes of those flocculents on the dinoflagellate, Cochlodinium polykrikoides, have been studied in laboratory and in field near Tongyong fish farm in September, 1996. The removal efficiencyes in the laboratory experiment was $43\%$ for $2\;g/{\ell}$, $64\%$ for $6g/{\ell}$ and $88\%$ for $10\;g/{\ell}$ in one hour after dispersion. No big difference of removal efficiency was found between the raw and the acid-activated loess. In the field survey, the removal rates ranged from 72 to $80\%$ in 30 min after the dispersion. The effect of loess scattering on water quality was estimated. The concentrations of dissolved inorganic nitrogen (DIN), chemical of gen demand (COD) and chlorophyll a decreased more or less after dispersion, while the concentration of suspended solid (SS) increased. The concentrations of dissolved oxygen (DO) and dissolved inorganic phosphorous (DIP) were kept constant. These results indicated that the dispersion concentration of more than $10g/{\ell}$ has a good removal efficiency of above $80\%$ without big variation of water quality after dispersion of yellow loess.

  • PDF

Development of simple tools for algal bloom diagnosis in agricultural lakes (농업용 호소의 조류 발생 진단을 위한 간편 도구의 개발)

  • Nam, Gui-Sook;Lee, Seung-Heon;Jo, Hyun-Jung;Park, Joo-Hyun;Cho, Young-Cheol
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.433-445
    • /
    • 2019
  • This study was designed to develop simple tools to easily and efficiently predict the occurrence of algal bloom in agricultural lakes. Physicochemical water quality parameters were examined to reflect the phytoplankton productivity in 182 samples collected from 15 agricultural lakes from April to October 2018. Total phytoplankton abundance was significantly correlated with chlorophyll-a (Chl-a) (r=0.666) and Secchi depth (SD) (r= -0.351). The abundances of cyanobacteria and harmful cyanobacteria were also correlated with Chl-a (r=0.664, r=0.353) and SD (r= -0.340, r= -0.338), respectively, but not with total nitrogen (TN) and total phosphorus (TP). The Chl-a concentration was correlated with SD (r= -0.434), showing a higher similarity than phytoplankton abundance. Therefore, Chl-a and SD were selected as diagnostic factors for algal bloom prediction, instead of analyzing the standing crop of harmful cyanobacteria used in algae alarm systems. Specifically, accurate diagnoses were made using realtime SD measurements. The algal bloom diagnostic tool is an inverse cone-shaped container with an algal bloom diagnosis chart that modified SD and turbidity measurement methods. Lake water was collected to observe the number of rings visible in the container or the number indicated in each ring, depending on the degree of algal bloom,and to determine the final stage of algal blooming by comparison to the colorimetric level on the diagnosis chart. For an accurate diagnosis, we presented 4-step diagnostic criteria based on the concentration of Chl-a and the number of rings and a fan-shaped algal bloom diagnosis chart with Hexa code names. This tool eliminated the variables and errors of previous methods and the results were easily interpreted. This study is expected to facilitate the diagnosis of algal bloom in agricultural lakes and the establishment of an efficient algal bloom management plan.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part II: Simulations of Chlorophyll a and Total Phosphorus Dynamics

  • Ram, Bhattarai Prasid;Kim, Yoon-Hee;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.472-484
    • /
    • 2008
  • The calibrated Andong Reservoir hydro-dynamic module (PART I) of the 2-dimensional hydrodynamic and water quality model, CE-QUAL-W2 [v3.2], was applied to examine the dynamics of total phosphorus, and chlorophyll $\alpha$ concentration within Andong Reservoir. The modeling effort was supported with the data collected in the field for a five year period. In general, the model achieved a good accuracy throughout the calibration period for both chlorophyll ${\alpha}$ and total phosphorus concentration. The greatest deviation in algal concentration occurred on $10^{th}$ October, starting at the layer just beneath the surface layer and extending up to the depth of 35 m. This deviation is principally attributed to the effect of temperature on the algal growth rate. Also, on the same date, the model over-predicts hypolimnion and epilimnion total phosphorus concentration but under-predicts the high concentrated plume in the metalimnion. The large amount of upwelling of finer suspended solid particles, and re-suspension of the sediments laden with phosphorus, are thought to have caused high concentration in the epilimnion and hypolimnion, respectively. Nevertheless, the model well reproduced the seasonal dynamics of both chlorophyll a and total phosphorus concentration. Also, the model tracked the interflow of high phosphorus concentration plume brought by the turbid discharge during the Asian summer monsoon season. Two different hypothetical discharge scenarios (discharge from epilimnetic, and hypolimnetic layers) were analyzed to understand the response of total phosphorus interflow plume on the basis of differential discharge gate location. The simulated results showed that the hypolimnetic discharge gate operation ($103{\sim}113\;m$) was the most effective reservoir structural control method in quickly discharging the total phosphorus plume (decrease of in-reservoir concentration by 219% than present level).

Carbon Stable Isotope Ratios of Phytoplankton and Benthic Diatoms in Lake Katanuma with Reference to Those of Other Lakes

  • Kikuchi, Eisuke;Takagi, Shigeto;Shikano, Shuichi;Hideyuki, Doi
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.8-11
    • /
    • 2005
  • Carbon stable isotope ratios of producers varied in lake ecosystems. In tile present study, we tried to estimate the seasonal variations of carbon isotope ratios of phytoplankton and benthic diatoms in a strongly acidic lake ecosystem. Lake Katanuma is a volcanic, strongly acidic lake (average pH of 2.2), located in Miyagi, Japan. Only two algal species dominate in Lake Katanuma; Pinnularia acidojaponica as a benthic diatom, and Chlamydomonas acidophila as a green alga. Carbon isotope values of P. acidojaponica varied seasonally, while those of particulate organic matter, which were mainly composed of C. acidophila remained fairly stable. The differences suggested that $CO_2$ gas was more frequently limited for P. acidojaponica than C. acidophila, since high density patches of benthic diatoms were sometimes observed on the lake sediment. Generally, carbon concentration mechanisms (CCMs)of microalgae can fix bicarbonate in lakes, and affect the carbon isotope values of microalgae. While, in Lake Katanuma, CCMs of the microalgae may scarcely function because of high $CO_2$ gas concentration and low pH. This is the reason for low seasonal amplitude of carbon isotope values of phytoplankton relative to those in other lakes.

Suggestion for Trophic State Classification of Korean Lakes (우리나라 호소의 영양상태 분류에 관한 제언)

  • Kong, Dongsoo;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.248-256
    • /
    • 2019
  • Most of the lakes in Korea are artificial, and their limnological characteristics are significantly different from those of natural lakes in other countries. In this study, the relationship between trophic state parameters was investigated, based on summer average data of the upper layer, in 81 lakes in Korea, 2013-2017. Compared with trends of foreign natural lakes, chlorophyll a (Chl.a) concentration was slightly lower at the same total phosphorus (TP) concentration, and transparency (Secchi depth, SD) was noticeably lower at the same Chl.a concentration. This is because of excessive allochthonous loading of non-algal material during the monsoon period, and the reduction in phosphorus availability to algal growth, by light limitation and short hydraulic residence time. Considering these characteristics, we suggested site-specific thresholds of trophic state classification for Chl.a, TP and SD, based on annual average data at the upper layer of lakes ($3-10{\mu}g\;L^{-1}$ of Chl.a measured by UNESCO method; $13-33{\mu}g\;L^{-1}$ of TP; 1.6-3.2 m of SD for mesotrophic state class, respectively). The threshold value of TP for each trophic state class, corresponded to the upper value of previously reported range, and that of SD was out of the range. We suggested applying only TP and Chl.a in assessment of trophic state of lakes in Korea, excluding SD.

The Fractionation Characteristics of BOD in Streams (하천에서 BOD 존재형태별 분포 특성)

  • Kim, Ho-Sub;Oh, Seung-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.92-102
    • /
    • 2021
  • In this study, the distribution characteristics according to the type of BOD and the effect of nitrogenous oxygen demand (NOD) and algal oxygen demand on BOD in three streams (Bokhacheon, Byeongseongcheon, and Gulpocheon) were evaluated. Although the BOD and NOD concentrations demonstrated a difference in the three streams, the carbonaceous BOD(CBOD)/BOD ratio was 0.75 (p=0.053, one-way ANOVA), and there was no significant difference in the three streams (r2≥0.92, p<0.0001). The NOD concentration of the Bokhacheon with high NH3-N was 1.7±1.3 mg/L, which was the highest among the three streams and showed a significant correlation with BOD. Seasonal variations in NOD in the three streams did not show a significant correlation with changes in NH3-N concentration (r2<0.28, p≥0.1789), and there was no significant difference in NOD even though NH3-N concentration in Gulpocheon was about twice that of Byeongseongcheon (p=0.870, one way ANOVA). The particulate CBOD(PCBOD)/CBOD ratio of the three streams was 0.55~0.64, and about 60% of the biodegradable organic matter was present in the particulate form. When the Chl.a concentration in the stream was more than 7 ㎍/L, the PCBOD tended to increase with the Chl.a concentration (r2=0.61, p=0.003). In the three streams, particulate NOD accounted for 81% of NOD; however, despite the large variation in NH3-N concentration (0.075~3.182 mg/L), there was no significant difference in soluble NOD(SNOD) concentration that ranged from 0.1 to 0.3 mg/L. In this study, the low contribution rate of SNOD to NOD is considered as a result of the removal of nitrifying bacteria along with the particles during the filtration process.

Comparative assessment on the influences of effluents from conventional activated sludge and biological nutrient removal processes on algal bloom in receiving waters

  • Park, Chul;Sheppard, Diane;Yu, Dongke;Dolan, Sona;Eom, Heonseop;Brooks, Jane;Borgatti, Douglas
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • The goal of this study was to evaluate the effect of effluents from conventional activated sludge (CAS) and biological nutrient removal (BNR) processes on algal bloom in receiving waters. We made multiple effluent sampling from one CAS and two BNR facilities, characterized their effluents, and conducted bioassay using river and ocean water. The bioassay results showed that CAS effluents brought similar productivity in both river and ocean water, while BNR effluents were more reactive and productive in ocean water. Unexpectedly, nitrogen-based biomass yields in ocean water were up to six times larger for BNR effluents than CAS effluent. These results indicated that nitrogen in BNR effluents, although its total concentration is lower than that of CAS effluent, is more reactive and productive in ocean water. The ocean water bioassay further revealed that effluents of BNR and CAS led to considerably different phytoplankton community, indicating that different characteristics of effluents could also result in different types of algal bloom in receiving waters. The present study suggests that effects of upgrading CAS to BNR processes on algal bloom in receiving waters, especially in estuary and ocean, should be further examined.

Effects of Dietary Algal Docosahexaenoic Acid Oil Supplementation on Fatty Acid Deposition and Gene Expression in Laying Tsaiya Ducks

  • Cheng, C.H.;Ou, B.R.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1047-1053
    • /
    • 2006
  • The current study was designed to determine the effects of dietary docosahexaenoic acid (DHA) on fatty acid deposition in egg yolk and various tissues of laying Tsaiya ducks, and on the mRNA concentrations of hepatic lipogenesis-related transcription factors. Thirty laying ducks were randomly assigned to three treatments with diets based on corn-soybean meal (ME: 2803 kcal/kg; CP: 17.1%; Ca: 3.4%) supplemented with 0% (control diet), 0.5% or 2% algal DHA oil. The DHA content in egg yolks of the ducks was elevated significantly (p<0.01) with the supplementation of dietary DHA. The DHA percentage of the total fatty acids in the egg yolk of laying ducks was 0.5%, 1.3% and 3.4% for 0%, 0.5% and 2% algal DHA oil treatments, respectively, for the $1^{st}$ week, and 0.5%, 1.5% and 3.3% for the $2^{nd}$ week. Therefore, algal DHA oil can be utilized by laying Tsaiya ducks to enhance the egg-yolk DHA content. The concentrations of triacylglycerol (TG) and cholesterol in plasma of laying Tsaiya ducks were not affected by dietary DHA treatments (p>0.05). The DHA concentration in plasma, liver, and skeletal muscle was increased with the addition of dietary algal DHA oil (p<0.05). The mRNA abundance of sterol regulatory element binding protein 1 (SREBP1) and SREBP2 in the livers of laying Tsaiya ducks was not affected by dietary DHA, suggesting that the expression of these transcription factors is tightly controlled and not sensitive to DHA treatments.