• 제목/요약/키워드: Algal concentration

검색결과 357건 처리시간 0.025초

생물검정에 의한 남조류 Microcystis가 수질에 미치는 영향 (The Impact on Water Quality from Blue-Green Algae Microcystis Natural Phytoplankton by Algal Assay)

  • 신재기;조경제
    • 한국환경과학회지
    • /
    • 제9권3호
    • /
    • pp.267-273
    • /
    • 2000
  • In order to understand the impact for decomposition of blue-green algae Microcystis on water quality, the algae were cultivated with collection of natural population during approximately one month, when water-bloom of Microcystis dominated at August 31, 1999 in the lower part of the Okchon Stream. The enrichment of inorganic NㆍP nutrients didn't in algal assay and the effect of Microcystis on water duality was assessed from the variation of nutrients by algal senescence. Microcystis population seemed to play a temporary role of sink for nutrients in the water body. Initial algal density of Microcystis was 2.3×10/sup 6/ cells/㎖. When Microcystis population died out under light condition, algal NㆍP nutrients between 9∼12 days affected to increase of biomass after reuse by other algal growth as soon as release to the ambient water. However, cellular nutrients under dark condition were almost moved into the water during algal cultivation. NH₄, NO₃ and SRP concentration were highly increased with 160, 17 and 79 folds, respectively relative to the early. As a result, the senescence of Microcystis population seemed to be an important biological factor in which cause more eutrophy and increase of explosive algal development by a lot of nutrients transfer to water body. There are significantly observed an effort of reduce for production of inner organic matters such a phytoplankton as well as load pollutants from watershed in side of the water quality management of reservoir.

  • PDF

Feeding the Larvae of the Sea Urchin Strongylocentrotus intermedius on a Red-Tide Dinoflagellate Cochlodinium polykrikoides

  • Lee, Chang-Hoon
    • 한국양식학회지
    • /
    • 제15권2호
    • /
    • pp.79-86
    • /
    • 2002
  • This study is the first attempt to understand the feeding physiology of a sea-urchin larva on a red-tide dinoflagellate. Fifteen day old larvae of S. intermedius capture C. polykrikoides cells by localized reversal of ciliary beats. No failure to transporte the algal cells from theciliated band to mouth and no rejection at the mouth suggest that C. polykrikoides has no feeding deterrence to S. intermedius larvae. The trend obtained for the clearance rate of S. intermedius larvae is similar to that of other sea urchin larvae. Thus, the clearance rate decreased as the algal concentration increased. Maximum clearance rate of S. intermedius on C. polykrikoides was 17.7 $\mu l$/larva/hr. Ingestion rate rapidly increased at lower algal concentrations and saturated at higher concentrations. There was no inhibition in ingestion rate at the highest prey concentration of ca. 3000 cells/ml. Maximum ingestion rate of S. intermedius on C. polykrikoides was 131 ngC/larva/d, which is higher than that reported for the larvae of the mussel Mytilus gal-lotrovincialis, but lower than that of the ciliate Strombidinopsis sp. The grazing rate, calculated by combining the field data on algal abundances with experimental data on ingestion rate, suggests that due to its low abundance, sea urchin Iarva has no significant grazing impact on C. polykrikoides population.

낙동강 조류군집의 계절적 변화와 영양염 농도와의 관계 (Relations of Nutrient Concentrations on the Seasonality of Algal Community in the Nakdong River, Korea)

  • 유재정;이경락;이혜진;황정화;류희성;신라영;박아름;천세억
    • 한국물환경학회지
    • /
    • 제31권2호
    • /
    • pp.110-119
    • /
    • 2015
  • The construction of the eight large weirs in the Nakdong River, the second largest river in Korea, caused big changes in the physical environment of the water system. Algal communities and their correlations with environmental factors, mainly nutrients were studied at five weir areas in the Nakdong River from 2010 to 2013. Water quality, hydrodynamics and algal composition were investigated. Results showed that flow velocities were reduced compared with that before weir construction near the areas where are located in the mid and upstreams of the Nakdong River. A seasonal algal community succession was observed and it was mainly correlated with temperature and phosphorus. Diatoms were dominated from winter to spring months and massive diatomic blooms of Stephanodiscus sp. occurred early in March during survey period. Cyanobacterial blooms of Microcystis sp. occurred from July to September 2013 and was preceded by the lower total phosphorus concentration of $0.05mg\;L^{-1}$. The correlations between total phosphorus concentrations and algal abundances were not significant during the survey periods. However, significant correlation with cyanobacteria was found in the period of weir construction after only at the GG survey site and blooms periods of 7 times in the survey sites, and its correlation coefficients were 0.53 (p<0.001) and 0.42 (p<0.01) respectively. When algal bloom was observed, partially low nutrient concentration was observed in the Nakdong River. In conclusion, partially low nutrient concentration which may result from algal bloom was observed, and we presume it caused the reduction of algal abundunces.

수종 담수적조 원인종들의 형광특성과 적용연구 (The study on the Fluorescence Characteristics of Several Freshwater Bloom Forming Algal Species and Its Application)

  • 손문호;;권오섭;문병용;정익교;이춘환;이진애
    • ALGAE
    • /
    • 제20권2호
    • /
    • pp.113-120
    • /
    • 2005
  • The freshwater blooms mainly blue-green algal blooms occur frequently in the lower Naktong River in summer, which provoke many socio-economical problems; therefore, the early detection of bloom events are demanding through the quantitative and qualitative analyses of blue green algal species. The in vivo fluorescence properties of cultured strains of Microcystis aeruginosa, M. viridis, M. wesenbergii, M. ichthyoblabe, Anabaena cylindrica, A. flos-aquae, and Synedra sp. were investigated. Wild phytoplankton communities of the lower Naktong River were also monitored at four stations in terms of their standing stocks, biomass and fluorescence properties compared with its absorption spectram. The 77K fluorescence emission spectra of each cultured strains normalized at 620 nm was very specific and enabled to detect of blue green algal biomass qualitatively and quantitatively. The relative chlorophyll a concentration determined by chlorophyll fluorescence analysis method showed significant relationship with chlorophyll a concentration determined by solvent extraction method ($R^2$ = 0.906), and the blue-green algal cell number determined by microscopic observation ($R^2$ = 0.588), which gives insight into applications to early detection of blue green algal bloom.

Formation of Assimilable Organic Carbon from Algogenic Organic Matter

  • Kim, Ji-Hoon;Chung, Soon-Hyung;Lee, Jing-Yeon;Kim, In-Hwan;Lee, Tae-Ho;Kim, Young-Ju
    • Environmental Engineering Research
    • /
    • 제15권1호
    • /
    • pp.9-14
    • /
    • 2010
  • The objective of this study was to assess the variation in the concentration of assimilable organic carbon (AOC) in a drinking water resource, and investigate the characteristics of AOC derived from algae. The seasonal change in AOC at the Kamafusa dam corresponded to changes in the algal cell number. In order to understand the relationship between AOC and algae in a water resource and water purification plant, two kinds of laboratory experiment were performed. The algal culture experiment showed that extracellular organic matter (EOM) that was released during the growth of Phormidium tenue with M-11 medium led to significant increases in the AOC concentration, but no significant variation in the AOC concentration was observed with CT medium containing a high dissolved organic carbon concentration. The chlorination experiment showed that the AOC included in EOM was not easily removed by chlorination, although the AOC included in intercellular organic matter released from the algal cells by chlorination was removed under conditions where residual chlorine was detected.

MBOD법에 의한 만경강 수계의 조류성장잠재력 평가 (Evaluation of Algal Growth Potential in the Mangyeong River by MBOD method)

  • 김종구;김준우
    • 한국환경과학회지
    • /
    • 제13권9호
    • /
    • pp.807-817
    • /
    • 2004
  • The modified biochemical oxygen demand (MBOD) were conducted to evaluate the water quality and fertility in the Mangyeong river from november 2002 to april 2003. MBOD method was used to evaluate algal growth potentials and their limiting factors. MBOD depends on the amount of available inorganic nutrient and organic substrate during 5-day incubation in the dark condition at $20^{\circ}C.$ The MBOD assay depends on inorganic nutrients such as phosphorus and nitrogen as well as reduced carbon as called MBOD, MBOD-P, and MBOD-N, respectively. The concentration of pollutants were in the range of 3.08~48.36 mg/L for COD. The concentration of nutrients were in the range of 0.37~111.62 mg/L for dissolved inorganic nitrogen (DIN) and 0.00~1.03 mg/L for dissolved inorganic phosphorus (DIP). The results of MBOD bioassay showed that the MBOD, MBOD-P and MBOD-N values were 15~173 mg $O_2/L,$ 13~165 mg $O_2/L$ and 66~175 mg $O_2/L$ ranges, respectively. The MBOD values are found to be the highest in Iksan River and the lowest in Hari River throughout the Mangyeong River. The relationships of MBOD, MBOD-P and MBOD-N in MBOD method were generally found in MBOD$\risingdotseq$ MBOD-P$\risingdotseq$MBOD-N. But the result of Gosan was appeared to MBOD$\risingdotseq$MBOD-N > MBOD-P. The MBOD-N value was higher 3 to 5 times than the MBOD-P value in the Gosan station. The algal growth potentials expressed as the concentration of chlorophyll-a were maximum 20 times more than algal biomass in the water column.

용담호 조류군집의 시공간적 분포와 조류발생 요인분석 (Characterization of Algal Community of Yongdam Reservoir and Identification of Ecological Factors Inducing the Changes in Community Composition)

  • 김현수;정일환
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권7호
    • /
    • pp.121-134
    • /
    • 2015
  • Spatial and temporal changes in algal population in Yongdam reservoir and ecological factors that induced the changes in the size and composition of algal population were investigated by monthly sampling at ten locations in the reservoir. Nutritional state of the reservoir was identified to be phosphorus-limited with nitrogen to phosphorus (N : P) ratio much greater than 17 in most samples. Algal population was dominated by three taxonomic groups, diatoms, chlorophytes and cyanobacteria. Although explosive algal growth was not observed in the summer, algal population showed transition with time of the dominant algal type from diatoms in the winter to cyanobacteria in the summer. Chlorophyta was not the dominant group in the reservoir although they maintained relatively stable number of cells in the reservoir and showed increase in population from March to May. The application of statistical methods revealed that the factors inducing changes in cell number of each group were water temperature for diatoms and cyanobacteria and phosphorus concentration for chlorophyte. Fluctuation of cyanobacterial population was mainly observed near the inlet of tributaries while diatoms showed higher variation inside the reservoir.

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • 제14권2호
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Gibberellic acid에 의한 chlorella의 생장과 호흡 및 투과성과의 관계 (Relationship between growth, respiration and permeability of chlorella cell treated with gibberellic acid)

  • 채인기
    • 미생물학회지
    • /
    • 제9권4호
    • /
    • pp.149-154
    • /
    • 1971
  • Effect pf gibberellic acid (GA) on the growth rate, respiratory activity and solute uptake of Chlorella cells were measured and their correlation were discussed. Growth rate and respiratory activity of the algal cells are enhanced considerably by very samll amount (50 ppm) of GA treatment although they are suppressed by relatively higher concentration more than 100 ppm. Phosphate uptake of the algal cells, however, decreased even though lower concentration of GA is applied. Thereforem it is inferred that the growth enhancement of the algae by GA is not due to the increase of the permeability of the algal cells but expansion growth owing to the increase of osmotic pressure caused by the increase of hydrolase activity of the algae.

  • PDF

수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구 (Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence)

  • 박정수
    • 상하수도학회지
    • /
    • 제36권4호
    • /
    • pp.239-248
    • /
    • 2022
  • The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.