• Title/Summary/Keyword: Algal concentration

Search Result 357, Processing Time 0.015 seconds

Effects of dissolved oxygen and coagulants on algal autoflotation (응집제종류 및 용존산소농도에 따른 조류의 Autoflotation효과)

  • 권오상;박혜경
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • To develop the removal technique of algal bloom the efficiencies of algal flocculation/ autoflotation by the kinds of coagulant and oversaturated oxygen concentration were investigated. The summarized results are as follow. 1. In the algae flocculation test with alum[$Al_2(SO_4)_3{\cdot}18H_2O$], optimum pH was 5.5 and, with chitosan optimum pH was 7.0. 2. Chitosan which was natural polymer showed the 5~10 times higher algal biomass flocculation efficiency than alum in the condition of same algal concentration. 3. For the each coagulant, the higher ${\Delta}DO$(oversaturated dissolved oxygen concentration - saturated dissolved oxygen) was, the faster the rising velocity of the algal floc was. 4. In the condition of about 4mg/L ${\Delta}DO$, the rising velocity of chitosan is about 2 times higher than that of alum, and chitosan formed the stronger algal floc.

  • PDF

Characteristics of Algal Abundance and Statistical Analysis of Environmental Factors in Lake Paldang (팔당호 조류발생 특성 및 수질환경인자의 통계적 분석)

  • Park, Hae-Kyung;Lee, Hyun-Ju;Kim, Eun-Kyung;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.584-594
    • /
    • 2005
  • The spatio-temporal abundance pattern of algae in Lake Paldang from 2002 to 2004 was investigated. The concentration of chlorophyll a representing algal biomass had fluctuated intensively throughout the year. Among three years, the highest algal biomass was shown in 2002, and typical growth peak of concentration of chlorophyll a was occurred in spring and autumn. There had been frequent rainfall in spring drought period in 2003 and it resulted in the decrease of the algal biomass. The distribution pattern of four algal groups on the surface water of Lake Paldang showed different abundance by season and by water area. In particular, different algal growth characteristics by water areas were observed. Influences of various environmental parameters on algal abundance in four water areas of Lake Paldang were analyzed statistically. From the results of Peason correlation analysis, it was understood that the kinds and affects of environmental parameters were different according to water areas and seasons. Based on the factors analysis of environmental parameters on the concentration of chlorophyll a, stepwise regression models whose independent variables were the factors produced by factor analysis and dependent variable was the concentration of chlorophyll a were derived by water areas and seasons. As a whole, factors related with organics and photosynthesis were revealed to have high affects to algal abundance, whereas limiting nutrients such as phosphorus and nitrogen showed little affect in Lake Paldang.

Effects of Methylglyoxal on the Growth Dynamics of Secenedesmus quadricauda (Methylglyoxal 이 Scenedesmus quadricauda 의 성장 역학에 미치는 영향)

  • Rhie, Ki-Tae
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.17-30
    • /
    • 1995
  • The growth of Scenedesmus quadricauda (Trup.) Breb. is enhanced by methylyoxal (MG), a general inhibitor of cell division, at threshold concentration in conjunction with reatment timing relative to growth stage. The stimulatory effect of MG on algal cell growth was most significant with 2.27-fold of untreated algal culture in cell number when 0.5 mM of MG was added to the algal culture at the beginning of logarithmic phase with an initial MG concentration of 0.535 mg $MG/10^6cell$. A Specific growth rates (SGRs) of MG-treated cultures were rapidly increased at the beginning of logarithmic phase with 1.89-fold of untreated algal culture. Cultures inoculated with high cell numbers of 2.4 to 4.8 X $10^4$ cells/ml were less sensitive to 0.5 mM of MG treatment. The algal cell division was ranged from 0.392 to 0.924 mg MG/106 cell. If the cell number of an algal culture at the time of inoculation was low (0.6 X $10^4$ cells/ml) and MG was added before logarithmic phase, the cell number of 0.5 mM of MG-treated cultures were lower than those of controls. In algal cultures treated with high concentrations of MG (1.0 mM and 2.0 mM), the algal growth was inhibited. Photosynthetic rate of growth-enhanced algal by 0.5 mM of MG was significantly higher than that of untreated or 1.0 mM of MG-treated algal cell, while there was no significant difference among those groups in respiratory rate. Pyruvate concentration in 0.5 mM of MG-treated culture was incrcased agter methylglyoxal trcatment.

  • PDF

Effectiveness of Flashing Light for Increasing Photosynthetic Efficiency of Microalgal Cultures over a Critical Cell Density

  • Park, Kyong-Hee;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.189-193
    • /
    • 2001
  • Critical cell density (CCD), the maximum cell concentration without mutual shading in algal cultures, can be used as a new operating parameter for high-density algal cultures and for the application of the flashing light effect on illuminated algal cultures. CCD is a function of average cell volume and light illumination area. The CCD is thus proposed as an index of estimation of mutual shading in algal cultures. Where cell densities are below the CCD, all the cells in photobioreactors can undergo photosysnthesis at their maximum rate. At cell densities over CCD, mutual shading will occur and some cells in the illumination chamber cannot grow photoautotrophically. When the cell concentration is higher than the CCD, specific oxygen production rates under flashing light were higher than those under continuous light. The CCD was found to be a useful engineering parameter for the application of flashing light, particularly in high-density algal cultures.

  • PDF

Study of Methylglyoxal and Phosphorus Stress on Algae (조류의 Methylglyoxal과 인 Stress 연구)

  • 이기태
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.133-142
    • /
    • 1998
  • Effects of phosphorous (P) and methylglyoxal (MG) on the cell number, dry weight, chlorophyll content, photosynthetic and respiratory rate, phosphate uptake and protein content of green algae (Scenedesrnus obliquus) were studied. The algal cell number from the medium treated with 0.5-1.0 mM of MG at 1/2 P or 1/4 P concentration was significantly lower than those of algae treated :with full strength of phosphrous in medium. The inhibitory effect of MG on algal cell division was enhenced at low concentration of phosphorous in medium. At the beginning of logrithmic phase of algal growth, the mean dry weight of algae from the medium without MG-treatment in 1/2 P media was significantly higher than that of algae treated with MG. After logrithmic phase of growth cycle, the mean dry weight of algae from the medium with 1.0 mM of MG-treatment in 1/4 P media was significantly lower than that of algae treated with or without MG. At logrithmic phase of algal growth, there were significant differences in the chlorophyll content among all groups of tested algae with various concentrations of P and MG. At 15 days after inoculation, the mean chlorophyll content per algal cell from the media without MG-treatment in 1/2P was significantly higher than that of other cells from MG-treated media. The adverse effect of MG at concentration of 0.5-1.0mM in 1/2 and 1/4 P media on photosynthetic rate was observed. The mean photosynthetic rate of algal cell without P and MG treatment at 15 days after inoculation was significantly higher than that of MGtreated algae. After logarithmic phase, the algal cell treated with 0.5mM of MG with full strength of phosphorous showed significantly high respiratory rate than that of other cell groups. There were significant differences in mean phosphate uptake rate among all groups of Scenedesmus obliquus at logarithmic phase. At 12 days after inoculation, phosphate uptake rate per each algal cell from the basic media without MG and P treatment was rapidly reduced which shows early introduction to stationary phase.

  • PDF

Mitigation of Harmful Algal Blooms by Sophorolipid

  • Baek, Seung-Hak;Sun, Xiao-Xia;Lee, Young-Ju;Wang, Song-Young;Han, Kyung-Nam;Choi, Joong-Ki;Noh, Jae-Hoon;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.651-659
    • /
    • 2003
  • A new method was proposed to control Harmful Algal Blooms (HABs) by a biosurfactant sophorolipid. The effect of sophorolipid on the growth, motility, precipitation, and recovery of algal cells was investigated for four common HAB species, Scripsiella trochoidea, Prorocentrum minimum, Cochlodinium polykrikoides, and Heterosigma akashiwo. The motility and growth of algal cells were inhibited significantly at the concentration of 20 and 5 mg/l sophorolipid, respectively, and no recovery was observed under the above concentrations. The concentration of 20 mg/l sophorolipid was considered to be an effective concentration for the mitigation of HABs. A sedimentation test suggested that the maximum precipitation occurred at the end of 1 h, and the algicidal effect of sophorolipid was observed by a microscope. Comparative study showed that sophorolipid had marked algicidal capability. Analysis on biodegradability, toxicity, and cost effectiveness further demonstrated the potential of sophorolipid in future HABs mitigation.

Study on the Modelling of Algal Dynamics in Lake Paldang Using Artificial Neural Networks (인공신경망을 이용한 팔당호의 조류발생 모델 연구)

  • Park, Hae-Kyung;Kim, Eun-Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • Artificial neural networks were used for time series modelling of algal dynamics of whole year and by season at the Paldang dam station (confluence area). The modelling was based on comprehensive weekly water quality data from 1997 to 2004 at the Paldang dam station. The results of validation of seasonal models showed that the timing and magnitude of the observed chlorophyll a concentration was predicted better, compared with the ANN model for whole year. Internal weightings of the inputs in trained neural networks were obtained by sensitivity analysis for identification of the primary driving mechanisms in the system dynamics. pH, COD, TP determined most the dynamics of chlorophyll a, although these inputs were not the real driving variable for algal growth. Short-term prediction models that perform one or two weeks ahead predictions of chlorophyll a concentration were designed for the application of Harmful Algal Alert System in Lake Paldang. Short-term-ahead ANN models showed the possibilities of application of Harmful Algal Alert System after increasing ANN model's performance.

Classification of the Algal Monitoring Points by Histogram Analysis of Chlorophyll-a (Chlorophyll-a의 히스토그램 분석을 통한 녹조발생 우심지역 분류)

  • Lee, Saeromi;Ahn, Chang Hyuk;Park, Jae Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • In this study, we analyzed the value of Chl-a by histogram to classify the points where algal management is required. The degree of algal bloom by point was analyzed using the ogive curve, and the algal control points were classified into three stages according to the shape of the frequency distribution table. Of the four major rivers, low concentration of Chl-a appeared most frequently in the Han River, while the high concentration of Chl-a was frequently found at the points of the Geum and the Yeongsan Rivers. In the case of the Han River, no apprehensive areas were found thatrequire intensive management, while most points on the Geum and the Yeongsan Rivers required algal management. Finally, the Nakdong River basin was identified as points requiring algal management from the mid to downstream. The results of this study have confirmation of the possibility that the frequency distribution could be used as a supplementary indicator to express the algal bloom.

Effect of Ceramic-Treated Water on the Inhibition of Algal Growth (세라믹 처리수의 조류생장 억제 효과)

  • 김형진;김지환;오희목;장감용;임경묵;심문보
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.979-985
    • /
    • 2002
  • Laboratory experiments were conducted to investigate the effect of ceramic-treated water on the inhibition of algal growth. The growth of Scenedesmus quadricauda and Chlorella vulgaris was enhanced by the ceramic-treated water in Allen medium containing high concentration of nutrients, but inhibited in natural water containing low concentration of nutrients. The growth of Oscillatoria tenuis and Microcystis aeruginosa was inhibited in both Allen medium and natural water. When comparing the effects of ceramic-treated water 1 (NC1) and 2 (NC2), the growth of O. tenuis and M. aeruginosa was somewhat enhanced by NC1, whereas inhibited by NC2. Therefore, it is suggested that NC2 can be more effective than NC1 in controlling the algal growth.

Feeding of Juvenile Purple Washington Clam, Saxidomus purpuratus (Sowerby): Effects of Algal Concentration and Temperature

  • Lee, Chang-Hoon;Choi, Yong-Suk;Bang, Jong-Deuk;Jo, Soo-Gun
    • Journal of Aquaculture
    • /
    • v.15 no.4
    • /
    • pp.253-260
    • /
    • 2002
  • To find the optimal rearing conditions for Saxidomus purpuratus juvenile, filtering activity was estimated as functions of algal concentration and temperature by measuring the rates of clearance (CR) and ingestion (IR), when S. purpuratus was feeding. The clams were fed on unialgal diet of Isochrysis galbana at 6 algal concentrations (4.6$\times$$10^4$~2.6$\times$$10^6$ cells/ml) and at 6 temperatures (5, 10, 15, 20, 25, and 30^{\circ}C ). Algal concentration significantly affected the CR and the IR at all temperatures. At lower algal concentrations, CR increased, but decreased beyond a particular concentration. The maximum CR ($CR_{max}$) at 5, 10, 15, 20, 25, and 30^{\circ}C were 0.30, 1.73, 5.95, 15.17, 21.12, and 0.33 $l/g/h$, respectively. Below the level of 5.6$\times$10$^{5}$ cells/ml, IR increased as algal concentration increased, but was saturated at higher concentrations. To maintain high growth rate of S. purpuratus, I. galbana should be supplied with more than 5.6$\times$10$^{5}$ cells/ml. The maximum IR ($IR_{max}$) at 5, 10, 15, 20, 25 and30^{\circ}C were $2.2$\times$10^8, $1.5\times$10^9, 3.4$\times$10^9, 4.9$\times$10^9, 5.3$\times$10^9, and 1.0$\times$10^8$ cells/g/h, respectively. As for temperature, both $CR_max$ and $IR_max$ increased remarkably with raising temperature from 5 to 25^{\circ}C, but rapidly decreased at 30^{\circ}C. Between 15 and 25^{\circ}C $CR_{max} and IR_{max}$ were higher and most stable, At this temperature range, the $Q_{10}/s for CR_{max} and IR_{max}$ were 3.5 and 1.6, respectively. Therefore the optimal thermal range for the juvenile is 15~$25^{\circ}C$. The annual variation in IR$_{max}$ predicted by natural seawater temperature shows that inactive period (with lower $IR_max$) lasts for 5 months (from December to April). To ensure higher growth of juvenile during this inactive period at hatcheries, rearing temperature should be elevated to $15^{\circ}C$.>.