• Title/Summary/Keyword: Algal bioassay

Search Result 28, Processing Time 0.024 seconds

Comparative assessment on the influences of effluents from conventional activated sludge and biological nutrient removal processes on algal bloom in receiving waters

  • Park, Chul;Sheppard, Diane;Yu, Dongke;Dolan, Sona;Eom, Heonseop;Brooks, Jane;Borgatti, Douglas
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • The goal of this study was to evaluate the effect of effluents from conventional activated sludge (CAS) and biological nutrient removal (BNR) processes on algal bloom in receiving waters. We made multiple effluent sampling from one CAS and two BNR facilities, characterized their effluents, and conducted bioassay using river and ocean water. The bioassay results showed that CAS effluents brought similar productivity in both river and ocean water, while BNR effluents were more reactive and productive in ocean water. Unexpectedly, nitrogen-based biomass yields in ocean water were up to six times larger for BNR effluents than CAS effluent. These results indicated that nitrogen in BNR effluents, although its total concentration is lower than that of CAS effluent, is more reactive and productive in ocean water. The ocean water bioassay further revealed that effluents of BNR and CAS led to considerably different phytoplankton community, indicating that different characteristics of effluents could also result in different types of algal bloom in receiving waters. The present study suggests that effects of upgrading CAS to BNR processes on algal bloom in receiving waters, especially in estuary and ocean, should be further examined.

The Identification of Limiting Nutrients Using Algal Bioassay Experiments (ABEs) in Boryeong Reservoir after the Construction of Water Tunnel

  • Ku, Yeonah;Lim, Byung Jin;Yoon, Jo-Hee;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.558-566
    • /
    • 2018
  • The objective of the study was to determine nutrition regime and limitation in the Boryeng Reservoir where there's a water tunnel between Geum River and the reservoir. Evaluation was conducted through in situ algal bioassay experiments (in situ ABEs) using the cubitainer setting in the reservoirs. For in situ ABEs, we compared and analyzed variations in chlorophyll-a (CHL-a) and phosphorus concentrations in Boryeong Reservoir before and after the water tunnel construction. We then analyzed the nutrient effects on the reservoir. Analysis for nitrogen and phosphorus was done in the three locations of the reservoir and two locations of the ABEs. The in situ ABEs results showed that phosphorous and Nitrogen, the primary limiting nutrient regulating the algal biomass was not limited in the system. The treatments of phosphorus or simultaneous treatments of N+P showed greater algal growth than in the control of nitrate-treatments, indicating a phosphorus deficiency on the phytoplankton growth in the system. The water from the Geum River had 5 times higher total phosphorus (TP) than the water in the reservoir. Efficient management is required as pumping of the river water from Geum River may accelerate the eutrophication of the reservoir.

Evaluation of Algal Growth Limiting Factor in the Nakdong River by MBOD Method (MBOD법에 의한 낙동강의 조류증식 제한인자 추정)

  • 송교욱;서인숙
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.469-479
    • /
    • 1995
  • The increase of population and industrial activities had brought into eutrophication in the Nakdong river. A remarkable acceleration of eutrophication brought about serious problems for water supply. Therefore, for the purpose of conservation of water quality in the Nakdong river it is necessary to control nutrients. MBOD method was use to evaluate algal growth limiting factor and algal growth potential in the Nakdong river from June to August 1994. The modified biochemical oxygen demand(MBOD) depends on the amount of available inorganic nutrient and organic substrate during 5 day incubation in the dark at 2$0^{\circ}C$. The MBOD assay depends on inorganic nutrients such as P and N as well as reduced carbon and called the MBOD, the MBOD-P, and the MBOD-N, respectively. The results of bioassay by MBOD(Modified BOD) method showed that the MBOD, MBOD-P and MBOD-N value were found to be in the ranges of 3.8~96.0 mg$O_2$/l, 5.6~94.0 mg$O_2$/l and 42.0~220 mg$O_2$/l, respectively. And the the bioassay value was found to be the highest in Koryong area and the lowest in Waekwan area throughout the Nakdong river. The variations of MBOD-P and MBOD-N value showed similar tendencies to the variations of phosphorus and nitrogen value, respectively. By MBOD method, the relationships of MBOD, MBOD-P and MBOD-N value were MBOD ≒ MBOD-P 《 MBOD-N. The MBOD value was nearly equal to the MBOD-P value, and the MBOD-N value was 3 to 20 times more than the MBOD-P value, approximately. Therefore, in the Nakdong river, phosphorus was the limiting factor for algal growth during summer season. The algal growth potential as the concentration of chlorophyll-a in the summer was maximum 5 times more than standing crop as it.

  • PDF

Evaluation of Algal Growth Limiting Factor in the Nakdong River by MBOD Method (MBOD법에 의한 낙동강의 조류증식 제한인자 추정)

  • Song, Kyo-Ook;Seo, In-Suk;Shin, Sung-Kyo;Lee, Suk-Mo;Park, Chung-Kil
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.83-83
    • /
    • 1995
  • The increase of population and industrial activities had brought into eutrophication in the Nakdong river. A remarkable acceleration of eutrophication brought about serious problems for water supply. Therefore, for the purpose of conservation of water quality in the Nakdong river it is necessary to control nutrients. MBOD method was use to evaluate algal growth limiting factor and algal growth potential in the Nakdong river from June to August 1994. The modified biochemical oxygen demand(MBOD) depends on the amount of available inorganic nutrient and organic substrate during 5 day incubation in the dark at 20$^{circ}C$. The MBOD assay depends on inorganic nutrients such as P and N as well as reduced carbon and called the MBOD, the MBOD-P, and the MBOD-N, respectively. The results of bioassay by MBOD(Modified BOD) method showed that the MBOD, MBOD-P and MBOD-N value were found to be in the ranges of 3.8∼96.0 mg$O_2$/l, 5.6∼94.0 mg$O_2$/l and 42.0∼220 mg$O_2$/l, respectively. And the the bioassay value was found to be the highest in Koryong area and the lowest in Waekwan area throughout the Nakdong river. The variations of MBOD-P and MBOD-N value showed similar tendencies to the variations of phosphorus and nitrogen value, respectively. By MBOD method, the relationships of MBOD, MBOD-P and MBOD-N value were MBOD ≒ MBOD-P 《 MBOD-N. The MBOD value was nearly equal to the MBOD-P value, and the MBOD-N value was 3 to 20 times more than the MBOD-P value, approximately. Therefore, in the Nakdong river, phosphorus was the limiting factor for algal growth during summer season. The algal growth potential as the concentration of chlorophyll-a in the summer was maximum 5 times more than standing crop as it.

Algal Bioassay for the Treated and Raw Wastewater in the Kyongan Stream (경안천에서 하수처리수와 생하수에 대한 algal bioassay)

  • Lee, Ok-Hee;Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.192-198
    • /
    • 2001
  • The Kyongan Stream and the inlet part of Paltang Reservoir are under significant influence of the effluent of sewage wastewater treatment plant (SWTP) and untreated domestic wastewater (DOW). The fertility of wastewater was evaluated through bioassay using natural phytoplankton population diluted in five levels. The concentrations of $NH_4$, SRP and SRSi were positively correlated with the biomass of phytoplankton. P concentration showed stronger correlation (r = 0.959, p<0.001)than other nutrients. Compared with the initial concentrations, $NH_4$ concentrations in samples from SWTP and DOW decreased 96% and 7%, respectively during the cultivation, and those of SRSi decreased 97% and 60%. However, $NO_3$ concentrations in samples neither showed any particular change nor any increase. Chl-a concentration ranged between $20\;{\mu}g/l$ and $125\;{\mu}g/l$, which maximum value increased up to 83 times. Estimated from the relationship between chl-a and SRP, the P concentration that can maintain the biomass of algae under mesotrophic state (<25\;{mu}g$\;chl-a/l$) was $83\;{mu}g\; P/l$. The volume of flow to maintain this level solely by natural dilution was about $16{\sim}25$ times of in flowing volume in the stream. However, it is not feasible to tap water of such quantity. Therefore, it is imperative to build an advanced sewage wastewater treatment facility that can reduce $NH_4$ and SRP concentrations that promote the growth of phytoplankton in discharged water.

  • PDF

The Limiting Nutrient of Eutrophication in Reservoirs of Korea and the Suggestion of a Reinforced Phosphorus Standard for Sewage Treatment Effluent (국내 호수의 제한영양소와 하수처리장 방류수 인 기준 강화의 필요성)

  • Kim, Bomchul;Sa, Seung-Hwan;Kim, Moonsook;Lee, Yunkyoung;Kim, Jai-Ku
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.512-517
    • /
    • 2007
  • The limiting nutrient of eutrophication in freshwater bodies in Korea was examined and the phosphorus concentration standard for sewage treatment effluent was discussed. The weight ratio of N/P in 13 major reservoirs showed the range of 18 to 163, which implies phosphorus is more limited than nitrogen for algal growth. In the correlation analysis phosphorus showed higher correlation with chlorophyll-a concentration than with nitrogen. In the algal bioassay phosphorus spike test enhanced algal growth in all 25 samples of five reservoirs, while nitrogen was found to co-limit only in four samples. It confirms that phosphorus is the only limiting nutrient for eutrophication in Korean reservoirs. As many reservoirs are eutrophic in Korea, phosphorus control is critical for the management of water quality. The phosphorus standard of sewage treatment effluent in Korea was compared with other countries, and it can be concluded that phosphorus standard is too high to be effective in eutrophication control and a lower phosphorus standard is essential for the water quality improvement.

Evaluation of Algal Growth Potential in the Mangyeong River by MBOD method (MBOD법에 의한 만경강 수계의 조류성장잠재력 평가)

  • Kim, Jong Gu;Kim, Jun U
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.807-817
    • /
    • 2004
  • The modified biochemical oxygen demand (MBOD) were conducted to evaluate the water quality and fertility in the Mangyeong river from november 2002 to april 2003. MBOD method was used to evaluate algal growth potentials and their limiting factors. MBOD depends on the amount of available inorganic nutrient and organic substrate during 5-day incubation in the dark condition at $20^{\circ}C.$ The MBOD assay depends on inorganic nutrients such as phosphorus and nitrogen as well as reduced carbon as called MBOD, MBOD-P, and MBOD-N, respectively. The concentration of pollutants were in the range of 3.08~48.36 mg/L for COD. The concentration of nutrients were in the range of 0.37~111.62 mg/L for dissolved inorganic nitrogen (DIN) and 0.00~1.03 mg/L for dissolved inorganic phosphorus (DIP). The results of MBOD bioassay showed that the MBOD, MBOD-P and MBOD-N values were 15~173 mg $O_2/L,$ 13~165 mg $O_2/L$ and 66~175 mg $O_2/L$ ranges, respectively. The MBOD values are found to be the highest in Iksan River and the lowest in Hari River throughout the Mangyeong River. The relationships of MBOD, MBOD-P and MBOD-N in MBOD method were generally found in MBOD$\risingdotseq$ MBOD-P$\risingdotseq$MBOD-N. But the result of Gosan was appeared to MBOD$\risingdotseq$MBOD-N > MBOD-P. The MBOD-N value was higher 3 to 5 times than the MBOD-P value in the Gosan station. The algal growth potentials expressed as the concentration of chlorophyll-a were maximum 20 times more than algal biomass in the water column.

Comparison of Short-Term Toxicity Tests Based on Feeding Behavior and Temperature Control by Ceriodaphnia dubia (Ceriodaphnia dubia의 먹이섭생 기작과 온도조절에 근거한 급성독성조사법의 비교)

  • Park, Jong-Ho;Lee, Sang-Ill;Cho, Young-Oak
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • Two methods, a Ceriodaphnia algal uptake suppression test (CAUST) and a new toxicity test based on temperature control (TTBTC) which are based on feeding behaviour and temperature control, respectively, were developed and compared for the adoption as the better methodology for short-term toxicity screening. As previously published by Lee et aI., (1997), the CAUST method is based on the feeding behaviour of C. dubia and requires as little as 1 hour of contact time between C. dubia neonates and toxicant. However, even though CAUST requires only 1 hour of contact time, this method still take many hours for the preparation and measurement. Before the test starts, neonate digestive tracts were cleared by feeding yeast to the daphnids, Neonates were then exposed to toxicant, followed by addition of Scenedesmus subspiatus into the bioassay vessels. Daphnids were examined under the bright-field microscope with the presence of algae (indicated by a green colored digestive tract) or the absence of algae. Uptake indicated no toxic effect, whereas, absence of uptake indicated toxic inhibition. Unlike CAUST, the newly developed method (TTBTC) is based on just temperature control for the toxicity test of C. dubia. Initially, neonates are exposed to toxicants while the temperature of water bath containing media increased to $35.5^{\circ}C$. After 1.25 hour of contact time, the number of the daphnids, either live (no toxic effect) or dead (toxic effect), is counted without the aid of any instrument. In both methods, median effective concentrations ($EC_{50}$ values) were computed based on the results over a range of dosed toxicant concentrations. It showed that TTBTC was as sensitive as the standard 48-hour acute bioassay and CAUST. TTBTC and CAUST were much more sensitive than the I-hour I.Q. test and 30-minute Microtox. This study indicates that TTBTC is an easier and more rapid toxicity test than the standard 48-hour acute bioassay and even CAUST.

Algal Growth Potential (AGP) Assay Using Heterosigma akashiwo(Raphidophyceae) in Pukman Bay, Korea (Heterosigma akashiwo(Raphidophyceae)을 이용한 북만의 조류성장잠재력 시험)

  • Kim Mu-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.81-87
    • /
    • 2006
  • Algal growth potential(AGP) assay using Heterosigma akashiwo was conducted in Pukman Bay. The effects of nutrients and microorganisms on the growth of H. akashiwo were specifically evaluated by the algal bioassay method. The different types of growth response of H. akashiwo to the addition of nutrients, and the co-incubation with microorganisms were clearly observed. Before H. akashiwo red tide occurrence, the growth of H. akashiwo was significantly stimulated by addition of nitrate of $50{\mu}M$ with phosphate of $5{\mu}M$. The addition of single phosphate had no clear effect on the growth of H. akashiwo. And the co-incubation with microorganisms had no clear effect on the growth of H. akashiwo. This result indicates that nitrate potentially limited the growth of H. akashiwo before red tide occurrence. However, during a bloom of H. akashiwo, the growth was significantly stimulated by addition of either nitrate of $50{\mu}M$ or phosphate of $5{\mu}M$. The addition of trace metals and vitamin $B_{12}$ had no clear effect on the growth of H. akashiwo in the period. This result indicates that both nitrate and phosphate potentially limited the growth of H. akashiwo during the bloom. On the other hand, during the termination period of H. akashiwo bloom, the growth of H. akashiwo was slightly stimulated by addition of phosphate and nitrate. But the growth of H. akashiwo was significantly enervated by the co-incubation with microorganisms. This result indicates that microorganisms potentially limited the growth of H. akashiwo in the period of bloom termination.

  • PDF