• Title/Summary/Keyword: Algae Biomass

Search Result 323, Processing Time 0.032 seconds

고율 조류 바이오매스 반응기에서 조사시간으로 본 Zygnema sterile과 Lepocinclism textra 바이오매스의 질소, 인 이온 생흡착의 비교 (Comparison of Biosorption of N, P ions by Zygnema sterile and Lepocinclism textra Biomass under Irradiation Period in High Rate Algae Biomass Reactor)

  • 공석기
    • 환경위생공학
    • /
    • 제22권4호
    • /
    • pp.11-21
    • /
    • 2007
  • The recent investigation indicates that the kinetic constants for anionic ions were merely the result of ion exchange between the algae cell wall surface and the anionic ion. In this study, Zygnema sterile and Lepocinclism textra, floating flagellate alga as the dominant algae strains, were cultivated using HRABR(High Rate Algae Biomass Reactor) and the cultivation conditions were 24 hrs. and 12 hrs. irradiation and it was studied how this algal biomass acts on the biosorption mechanism of anionic N and P. Results are as follows : 1. Calculating the specific chl.-a growth rate using Michaelis-Menten model, the one of 24hrs. irradiation was about 55 times higher than the one of 12 hrs. irradiation 2. Calculating the specific chl.-a growth rate using Kuo model, the one of 24 hrs. irradiation was about 2.26 times higher than the one of 12 hrs. irradiation 3. Langmuir model can apply to the biosorption mechanism of anionic N and P in HRABP. 4. Regarding the chlorophyll-a concentration as unit weight of sorbent, the ion selectivity coefficients for N and P are as follows : $(NH_3-N)+(NO_3-N)$ in 24 hrs. irradiation ; 44.984 $PO_4-P$ in 24 hrs. irradiation ; 24.237 $(NH_3-N)+(NO_3-N)$ in 12 hrs. irradiation ; 1432.851 $PO_4-P$ in 12 hrs. irradiation ; 599.076

한국 일광만 저서 해조류의 해조상과 군집구조 (Flora and Community Structure of Benthic Marine Algae in Ilkwang Bay, Korea)

  • 강필준;김영식;남기완
    • ALGAE
    • /
    • 제23권4호
    • /
    • pp.317-326
    • /
    • 2008
  • Marine algal flora and community structure were investigated seasonally at three sites in Ilkwang Bay on the southern east coast of Korea from May 2007 to February 2008. Total 103 species including 10 of green algae, 17 of brown algae, 76 of red algae were collected and identified. Among these species, 21 species were found throughout the year. Ulva pertusa, Enteromorpha linza, Grateloupia lanceolata, Chondracanthus intermedia and Caulacanthus ustulatus were distributed dominantly in upper intertidal zone. By contrast, crustose coralline algae, Grateloupia spp., Chondracanthus tenellus, Prionitis cornea and Sargassum spp. occurred predominantly in middle intertidal zone. Grateloupia spp., Sargassum spp., Ecklonia cava and Ulva pertusa were dominant in lower intertidal zone. Annual mean biomass in wet weight was 478.3 g m$^{-2}$. Maximum biomass was recorded in site 1 (731.8 g m$^{-2}$), and minimum was recorded in site 3 (78.5 g m$^{-2}$). The R/P, C/P and (R + C)/P value reflecting flora characteristics were 4.47, 0.59 and 5.06, respectively. Two groups produced by cluster analysis, one including sites 1, 2 and the other including site 3, showed meaningful difference in similarity, each other. Site 3 showed the limited species composition due to inflow of fresh water and absence of solid substratum. However, there was no significant difference between site 1 and site 2. In conclusion, the number of marine algae species and biomass in Ilkwang Bay were markedly reduced comparing with the previous studies. These suggest that a solution for reconstruction of the poor marine algal vegetation is considerably demanded.

Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida

  • Berthold, David Erwin;Rosa, Nina de la;Engene, Niclas;Jayachandran, Krish;Gantar, Miroslav;Laughinghouse, Haywood Dail IV;Shetty, Kateel G.
    • ALGAE
    • /
    • 제35권1호
    • /
    • pp.91-106
    • /
    • 2020
  • Incorporating renewable fuel into practice, especially from algae, is a promising approach in reducing fossil fuel dependency. Algae are an exceptional feedstock since they produce abundant biomass and oils in short timeframes. Algae also produce high-valued lipid products suitable for human nutrition and supplement. Achieving goals of producing algae fuels and high-valued lipids at competitive prices involves further improvement of technology, especially better control over cultivation. Manipulating microalgae cultivation conditions to prevent contamination is essential in addition to promoting optimal growth and lipid yields. Contamination of algal cultures is a major impediment to algae cultivation that can however be mitigated by choosing extremophile microalgae. This work describes the isolation of alkali-tolerant / alkaliphilic microalgae native to South Florida with ideal characteristics for cultivation. For that purpose, water samples from Lake Okeechobee were inoculated into Zarrouk's medium (pH 9-12) and incubated for 35 days. Selection resulted in isolation of three strains that were screened for biomass and lipid accumulation. Two alkali-tolerant algae Chloroidium sp. 154-1 and Chlorella sp. 154-2 were poor lipid accumulators. One of the isolates, the diatom Fistulifera sp. 154-3, was identified as a lipid accumulating, alkaliphilic organism capable of producing 0.233 g L-1 d-1 dry biomass and a lipid content of 20-30% dry weight. Lipid analysis indicated the most abundant fatty acid within Fistulifera sp. was palmitoleic acid (52%), or omega-7, followed by palmitic acid (17%), and then eicosapentanoic acid (15%). 18S rRNA phylogenetic analysis formed a well-supported clade with Fistulifera species.

독도의 하계 해조 군집 (Summer Marine Algal Communities at Dokdo, Korea)

  • 최창근;권천중;김미경
    • 수산해양교육연구
    • /
    • 제26권5호
    • /
    • pp.1037-1043
    • /
    • 2014
  • We extensively observed macroalgal assemblages of species composition and biomass of summer benthic marine algae at Dokdo in the East sea of Korea. A total of 102 species (12 Chlorophyta, 36 Phaeophyta, and 54 Rhodophyta) were identified in quadrats and were analysed qualitatively to define the variation patterns. Biomass in dry weight according to various depths ranged between 146.0 to 764.2 g m-2 at study sites. Mean biomass at the investigated sites was greater in the 10m depth range than in the 5 and 15m depths at Dongdo. The flora could be classified into six functional groups: coarsely branched form (51.0%), filamentous form (17.7%), thick leather form (15.7%), sheet form (5.9%), jointed calcareous form (4.9%) and crustose form (4.9%). The R/P, C/P and (R+C)/P value were 1.67, 0.50 and 2.17, respectively. The number of marine algae species and the biomass in Dokdo area were markedly reduced as compared with those in the previous studies. This result suggests possible future changes in the algal vegetation, considering coastal marine environment of this area.

미세기포를 이용한 Spirulina platensis의 입자 부상분리 특성 및 수거효율 (Particle Separation Characteristics and Harvesting Efficiency of Spirulina platensis Using Micro-bubble)

  • 곽규동;김미숙;곽동희
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.621-629
    • /
    • 2013
  • Since algae had been issued an environmental problem, water blooms, deepened due to increase of retention water basin in Korea as well as a biomass resource for producing biofuel, this study conducted a series of experiments for Spirulina platensis using the flotation process with micro-bubble. To elevate utilization of collected-algae, this study focused on omitting or minimizing coagulant's doses as changing a cultivation period and condition affected on physical property change of algae. Two coagulants, PAC and Chitosan, were used to test the collecting rate of algae and the result found no difference between two rates. For flotation experiments without adding the coagulant, dried algae weight (passing 14 days after cultivation for 20 days) detected high separation efficiency 98.2 % and it (passing 7 days after long-term cultivation for 28 days) presented good separation efficiency 91.9 %. Chlorophyll's separation efficiency showed a similar tendency with the case of the dried algae weight. In endogeny conditions, a light source and a carbon source were not considerably affected on the flotation separation efficiency. Thus, this study confirms that algae biomass may be collected without the coagulant during the endogeny condition period after enough cultivation time, 3 weeks.

Services of Algae to the Environment

  • Rai, Lal-Chand;Har Darshan Kumar;Frieder Helmut Mohn;Carl Johannas Soeder
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.119-136
    • /
    • 2000
  • Being autotrophic, algae occupy a trategic place in the biosphere. They produce oxygen both directly and indirectly through the chloroplasts of all green plants. The chloroplasts are believed to have originated from archaic prokaryotic algae through endosymbiosis with primitive eukaryotic cells. Phytoplankton and other algae regulate the global environment not only by releasing oxygen but also by fixing carbon dioxide. They affect water quality, help in the treatment of sewage, and produce biomass. They can be used to produce hydrogen which is a clean fuel, and biodiesel, and fix $N_2$ for use as a biofertilizer. Some other services of algae to the environment include restoration of metal damaged ecosystems, reducing the atmospheric $CO_2$ load and citigating global warming, reclamation of saline-alkaline unfertile lands, and production of dimethyl sulphide (DMS) and oxides of nitrogen (NOx) involved in the regulation of UV radiation. ozone concentration, and global warming. Algae can be valuable in understanding and resolving certain environmental issues.

  • PDF

Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation

  • Wang, Junfeng;Sommerfeld, Milton R.;Lu, Congming;Hu, Qiang
    • ALGAE
    • /
    • 제28권2호
    • /
    • pp.193-202
    • /
    • 2013
  • Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g $L^{-1}$ DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g $L^{-1}$ DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g $L^{-1}$ and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g $L^{-1}$), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg $L^{-1}\;d^{-1}$ was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

한국 제주도 남부 조하대의 해조상 및 군집구조 (Flora and Community Structure of Subtidal Zone in South Jeju, Korea)

  • 강규상;고용덕;김영식
    • 수산해양교육연구
    • /
    • 제27권1호
    • /
    • pp.273-283
    • /
    • 2015
  • This study was carried out to examine the species composition and community structure of benthic marine algae at the subtidal zones of Daepo, Wolpyeong, Wimi and Jigwido in south Jeju, Korea from March to December 2009. Total 87 species including 14 green algae, 23 brown algae, and 50 red algae were collected and identified. Among these species, 9 species were found throughout the year. The dominant species which contributed significantly to the total biomass were Ecklonia cava, Undaria pinnatifida, Peyssonnelia capensis, Cladophora wrightiana, Sargassum serratifolium, Grateloupia angusta, Codium coactum, Plocamium cartilagineum, and Sargassum macrocarpum. The average seaweed biomass was 7,578.2 g wet weight $m^{-2}$ and maximum biomass was recorded seasonally in spring ($9,627.6g\;m^{-2}$), while minimum was recorded in autumn ($5,963.0g\;m^{-2}$), by sites maximum biomass Jigwido ($12,889.9g\;m^{-2}$), while minimum was recorded in Daepo ($5,403.8g\;m^{-2}$). The seasonal and regional flora were investigated as six functional groups. A coarsely branched form was the most dominant functional group constituting from 42.9~52.8% of the total flora. Ecological state group (ESG) II, as an opportunistic species, including sheet form, filamentous form, and coarsely branched form, consisted of 31~59 species, constituting 77.5~84.9%.

제주 남부해역 조하대 하계 해조군집 및 갯녹음 특성 (Characteristics of Summer Marine Algal Community and Barren Ground in the Southern Coast of Jeju, Korea)

  • 정승욱;전병희;최창근
    • 해양환경안전학회지
    • /
    • 제25권2호
    • /
    • pp.212-219
    • /
    • 2019
  • 본 연구는 우리나라 제주 해역의 여름철 해조 군집 특성과 갯녹음 현황을 파악하고자 수행하였다. 연구는 2017년 7월부터 9월까지 스쿠버 다이빙(SCUBA Diving)을 이용하여 정량 조사 및 정성 조사를 시행하였다. 연구 결과 녹조류 11종(9.1 %), 갈조류 24종(19.8 %), 홍조류 86종(71.1 %) 등 총 121종의 해조류가 확인되었다. 지역별로는 형제섬이 60종으로 출현종수가 가장 많았으며, 하례가 18종으로 가장 적었다. 연구 지역의 평균 생물량은 $1,503.0g{\cdot}m^{-2}$이며, 주변 도서의 평균 생물량($3,268.7g{\cdot}m^{-2}$)이 본섬의 평균 생물량($914.7g{\cdot}m^{-2}$)보다 높았다. 우점종은 주변 도서에서 Sargassum macrocarpum, 본섬에서 Ecklonia cava로 나타나 생물량뿐만 아니라 종 조성에서도 차이를 보였다. 해조 군집 특성(종 조성, 생물량, 대형 갈조류의 생물량 비율), 무절산호말류의 피복도, 조식동물의 밀도 등을 토대로 연구 지역의 여름철 해조 군집 상태를 평가한 결과, 형제섬과 마라도 두 지역은 우수한 해조 군집을 유지하고 있는 것으로 판단되어 보전 및 지속적인 관리가 요구되며, 다른 6개 지역은 각 지역별로 해조 군집의 조성 내지 복원이 필요한 실정이다. 갯녹음 현상이 가속화됨에 따라 모니터링뿐만 아니라 현재 해조 군집의 현황 파악이 제대로 이루어지지 않은 지역을 대상으로 해양 생태계의 실태를 파악하는 일도 시급한 것으로 판단된다.

갈색해조류에 의한 카드뮴의 흡착 및 탈착 특성 (Characteristics of Cadmium Biosorption and Desorption by Brown Marine Algae)

  • 이학성
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.249-254
    • /
    • 1999
  • The biosorption and desorption of Cd were carried out using brown marine algae, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by the physical and the chemical pretreatment of Sargassum fluitans biomass. The Cd uptake was independent of the alginate content. In case of protonated biomass, Cd uptake was the lowest because the alginic acid of biomass was dissolved to cadmium solution during the biosorption. The maximum Cd uptake of Sargassum biomass was ranged from 79 mg/g to 139 mg/g. In case of raw biomass, the higher the alginate content of biomass, the higher was the Cd uptake. 100% of Cd and light metals sorbed in the biomass were eluted at 0.1N HCI(pH 1.1). However, the elution efficiency in $CaCl_2$ and $Ca{(NO_3)}_2$solution was varied by the concentration, the solid to liquid ratio and the pH of calcium solution. The distribution coefficient between Cd and protons in the desorption solution at pH ranged from 1.6 to 2.9 was observed on the constant stoichometric coefficient(1.3).

  • PDF