• Title/Summary/Keyword: Alfa fiber

Search Result 3, Processing Time 0.018 seconds

Effects of Manufacturing Technology on the Mechanical Properties of Alfa Fiber Non-woven Reinforced PMMA Composites

  • Wanassi, Bechir;Jaouadi, Mounir;Hassan, Mohamed Ben;Msahli, Slah
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.112-117
    • /
    • 2015
  • Mechanical properties of nonwoven alfa fiber based reinforced biocomposite were evaluated to assess the possibility of using it as a new material in engineering applications such as orthopedic application. Samples were fabricated by needle punching, thermal bonding and Hydroentanglement, by blending alfa fibers with wool fibers or Polypropylene fibers. The mechanical properties were tested and showed that the nonwoven NW3 (alfa fiber/PP/PLA, with hydroentanglement) is the best. It has a value of stress at break of 1.94 MPa, a strain of 54.2% and a young's module of 7.95 MPa, in a production normal direction. A biocomposite has been made with NW3 mixed with PMMA matrix. The use of nonwoven based alfa fiber in reinforcing the composite material increases its rigidity and the tensile strength; the elongation was found to be 1.53%, the Young's Module of 1.79 GPa and the tensile at break of 15.06 MPa. Results indicated that alfa fibres are of interest for low-cost engineering applications and can compete with glass fibres in orthopedic application.

Performance of polymer concrete incorporating waste marble and alfa fibers

  • Mansour, Rokbi;El Abidine, Rahmouni Z.;Brahim, Baali
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.331-343
    • /
    • 2017
  • In this study a polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with natural Alfa fibers has been studied. The results of flexural testing of unreinforced polymer concrete with different rates of charges (marble) showed that the concrete with 20% of marble is stronger and more rigid compared to other grades. Hence, a rate of 20% of marble powder is selected as the optimal value in the development of polymer concrete reinforced Alfa fibers. The fracture results of reinforced polymer concrete with 1 and 2 wt% of chopped untreated or treated Alfa fibers showed that treated Alfa (5% NaOH) fiber reinforced polymer concrete has higher fracture properties than other composites. We believe that this type of concrete provides a very promising alternative for the building industry seeking to achieve the objectives of sustainable development.

Mechanical behavior of RC beams bonded with thin porous FGM plates: Case of fiber concretes based on local materials from the mountains of the Tiaret highlands

  • Benferhat Rabia;Tahar Hassaine Daouadji;Rabahi Abderezak
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.241-260
    • /
    • 2023
  • The objective of this study is to evaluate the effects of adding fibers to concrete and the distribution rate of the porosity on the interfacial stresses of the beams strengthened with various types of functionally graded porous (FGP) plate. Toward this goal, the beams strengthened with FGP plate were considered and subjected to uniform loading. Three types of beams are considered namely RC beam, RC beam reinforced with metal fibers (RCFM) and RC beam reinforced with Alfa fibers (RCFA). From an analytical development, shear and normal interfacial stresses along the length of the FGP plates were obtained. The accuracy and validity of the proposed theoretical formula are confirmed by the others theoretical results. The results showed clearly that adding fibers to concrete and the distribution rate of the porosity have significant influence on the interfacial stresses of the beams strengthened with FGP plates. Finally, parametric studies are carried out to demonstrate the effect of the mechanical properties and thickness variations of FGP plate, concrete and adhesive on interface debonding, we can conclude that, This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP-RC hybrid structures.