• Title/Summary/Keyword: Aleutian Islands

Search Result 7, Processing Time 0.019 seconds

Marine macroalgae of the Aleutian Islands: I. Bangiales

  • Lindstrom, Sandra C.;Lindeberg, Mandy R.;Guthrie, Daniel A.
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.247-263
    • /
    • 2015
  • We sequenced the rbcL gene in more than 100 collections of foliose Bangiales made in the Aleutian Islands and western Alaska Peninsula during the past 25 years. This work allows us to recognize four previously undescribed species, two in the genus Boreophyllum and two in Pyropia. Boreophyllum aleuticum appears to be endemic to the Aleutian Islands, whereas B. ambiguum is known to occur from the Yakutat area to the tip of the Alaska Peninsula. The two previously undescribed species of Pyropia are more broadly distributed. Pyropia taeniata, which was previously identified under the name Py. pseudolinearis, occurs from northern Southeast Alaska through the Aleutian Islands. Pyropia unabbottiae, which is sister to Py. abbottiae, occurs from southern Vancouver Island to Attu Island. Collections throughout the Aleutian Islands allow us to document the distribution of another dozen species of foliose Bangiales in this region, including Boreophyllum aestivale, Fuscifolium tasa, Pyropia fallax, Py. fucicola, Py. gardneri, Py. kurogii, Py. nereocystis, Py. pseudolanceolata, Py. torta, Wildemania amplissima, W. norrisii, and W. variegata. We were unable to confirm the occurrence of the following species previously recorded from the Aleutian Islands: Porphya ochotensis, Pyropia abbottiae, Py. perforata, Py. pseudolinearis, P. purpurea, P. umbilicalis, Py. yezoensis and Wildemania schizophylla. At least two undescribed filamentous Bangiales also occur in the Aleutian Islands.

Analysis of the relationship between volcanic eruption and surface deformation in volcanoes of the Alaskan Aleutian Islands using SAR interferometry

  • Lee, Seulki;Lee, Chang-Wook
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1069-1080
    • /
    • 2018
  • The Alaskan Aleutian Islands form one of the world's largest volcanic island chains. The islands are exposed to both direct and indirect damage from continuous volcanic eruptions. Surface deformation is mostly observed before volcanic eruption, but with some volcanoes, such as Ontake Volcano, deformations cannot be detected. In this study, we analyzed volcanic eruptions in the Alaskan Aleutian Islands, which is a region of frequent volcanic eruptions. Based on our results, we predicted the type of eruption that would occur on Baekdusan Volcano according to the presence or absence of surface deformation. For this purpose, 10 sites were selected from areas where recent volcanic activity had occurred in the Aleutian Islands. Additionally, Advanced Land Observing Satellite Phased Array-type L-band Synthetic Aperture Radar (ALOS-PALSAR) and European Remote Sensing (ERS)-1/2 satellite data were obtained from 10 experimental sites. Based on the radar satellite data, the volcanic surface deformations were identified, and the characteristics of the volcanic eruption were quantitatively calculated by determining the presence of surface deformation. The results of this study should facilitate the process of correlation between volcanic eruption and surface deformation.

Meteorological Mechanisms Associated with Long-range Transport of Asian Dust Observed at the West Coast of North America in April 2001

  • Song Sang-Keun;Kim Yoo-Keun;Moon Yun-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.1-14
    • /
    • 2004
  • Meteorological mechanisms in association with long-range transport of Asian dust in April 2001 have been investigated using weather maps, satellite images, TOMS and surface $PM_{10}$ data, backward trajectories, plus modeling output results (geopotential heights, horizontal wind vectors, potential temperatures, and streamlines). The results indicated that long -range transport of Asian dust to the west coast of North America was associated with strong westerlies between the Aleutian low and the Pacific high acting as a conveyor belt. Accelerating westerly flows due to cyclogenesis at the source regions over East Asia transported pollution from the continent to the central Pacific. When the system reached the Aleutian Islands, the intensity of troughs and the westerlies were amplified in the North Pacific. Thereafter the winds between the Aleutian Islands and the Pacific Ocean were more intensified from the air flow transport of the conveyor belt. Consequently, the strong wind in the conveyor belt enhanced the dust transport from the Pacific Ocean to the west coast of North America. This was evidenced by $PM_{10}$ concentration (maximum of about $100{\mu}g\;m^{-3}$) observed In California. Further evidence of the dust transport was found through the observation of satellite images, the distribution of TOMS aerosol index, and the analyses of streamlines and backward trajectories.

A molecular investigation of Saccharina sessilis from the Aleutian Islands reveals a species complex, necessitating the new combination Saccharina subsessilis

  • Starko, Samuel;Boo, Ga Hun;Martone, Patrick T.;Lindstrom, Sandra C.
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • Cryptic species complexes are increasingly recognized in phycological research, obscuring taxonomy and raising questions about factors influencing speciation. A recent exploration of kelp genetic diversity on Haida Gwaii, British Columbia revealed the existence of a new species, Saccharina druehlii, which is cryptic with Saccharina sessilis. This suggests that molecular investigations further north may be required to elucidate the taxonomy and evolutionary history of this lineage. Although, for several decades, S. sessilis was considered a single highly variable species, its taxonomy has been far from straightforward. In particular, Hedophyllum subsessile (Areschoug) Setchell is now recognized as a synonym of S. sessilis in North America, but as a growth form of Saccharina bongardiana in Far East Russia. To resolve this taxonomic confusion, we sequenced mitochondrial (CO1-5P) and nuclear (internal transcribed spacer) markers of S. sessilis populations from the Aleutian Islands, Alaska, USA. Interestingly, none of our sequences matched S. sessilis sensu stricto. Instead, CO1-5P sequences from populations in the central and eastern Aleutians matched exactly S. druehlii with increasing sequence divergence occurring westward. Samples from Attu, the western-most island, composed a genetic group that clearly represents Kjellman's concept of Hafgygia bongardiana f. subsessilis and is distinct enough from S. druehlii and S. sessilis to potentially constitute a distinct species. Therefore, Saccharina subsessilis comb. nov. is proposed for this entity. Our results suggest the existence of a species complex at the crown node of S. sessilis and thus further investigation of Saccharina in Alaskan waters should be conducted to reconstruct the evolutionary history of this fascinating lineage.

Synoptic Climatological Characteristics of Dry and Wet Years in Korea in the Spring (한국의 춘계 소우년과 다우년의 종관기후학적 특성)

  • 양진석
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.659-666
    • /
    • 2003
  • This study is a comparative analysis on the variabilities of spring precipitation and atmospheric circulations of 500hPa surfaces between dry years and wet years over the Korean Peninsula. The distribution of variabilities of precipitation in spring are different from month to month. In March, the pattern is west-high and east-low, in April, north-high and south-low, in May, east-high and west-low respectively. In the distribution of 500hPa geopotential height anomaly, dry years of March show west-high and east-low pattern in that negative anomaly zones are formed around the Korean Peninsula and western coast of the northern Pacific Ocean, and positive anomaly zones are formed in the inland of East Asia centered on Siberia. Consequently, the Korean Peninsula and neighboring regions experience dry season when the zonal flows are strong with the positive anomaly zones of zonal components. On the contrary in the wet years the westerlies are weak since the pattern is east-high and west-low in which the positive anomaly zones are formed over the Korean Peninsula centered on the Aleutian Islands and western coast of the northern Pacific Ocean and the negative anomaly zones are formed in the inland of East Asia centered on Tibet Plateau and Siberia. The dry years of April and May show north-high and south-low patterns in that negative anomaly zones are found from the center of the northern Pacific Ocean to the eastern coast of East Asia, and the positive anomaly zones are found in the center of East Asia extending from Aleutian Islands to Tibet Plateau. On the contrary, in the wet years the patterns show south-high and north-low. This study identified not only that there are contrary atmospheric circulation patterms between dry years and wet years over Korean Peninsua in spring, but also there are different atmosphric circulation patterns between early and late spring.

Phylogenetic Relationships of Soranthera ulvoidea (Chordariaceae, Phaeophyceae) on the Basis of Morphology and Molecular Data

  • Cho, Ga-Youn;Kim, Myung-Sook;Boo, Sung-Min
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.91-97
    • /
    • 2005
  • The brown algal family Chordariaceae sensu lato is a focus of taxonomy because recent studies suggest a broad concept of the family, including genera formerly classified in the Dictyosiphonales. Using morphology, plastid rbcL and nrDNA ITS sequences, we evaluated relationships of the monotyic genus Soranthera (S. ulvoidea), which has been classified in the Punctariaceae. The species occurs in Bering Sea and Aleutian Islands, Alaska to Baja California. Thalli are globose to lobed, hollow, 3-5 cm in diameter, and covered with evenly distributed sori. However, two forms within the species are recognized: f. ulvoidea for globose forms and f. difformis for lobed forms. Plastid rbcL and nuclear ITS region sequences were newly determined in samples of S. ulvoidea from the Pacific coast of the North America. We found little variations in the ITS sequences among samples of S. ulvoidea from five different locations and in the rbcL region from two different locations. These results do not support previous classification of f. ulvoidea and f. difformis within the species. All analyses of our rbcL sequence dataset show that Soranthera was placed in the Chordariaceae s.l., but more related to Botrytella than Punctaria and Asperococcus.

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.