• Title/Summary/Keyword: Alcohol-induced liver disease

Search Result 61, Processing Time 0.027 seconds

Hepatoprotective Effects of the Extracts of Alnus japonica Leaf on Alcohol-Induced Liver Damage in HepG2/2E1 Cells (알코올로 유도된 간손상 모델 HepG2/2E1 세포에서 오리나무 잎 추출물의 간보호효과)

  • Bo-Ram Kim;Tae-Su Kim;Su Hui Seong;Seahee Han;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Do-Yun Jeong;Kyung-Min Choi;Jin-Woo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.120-129
    • /
    • 2024
  • Alcoholic liver disease (ALD) is a significant risk factor in the global disease burden. The stem bark of the Betulaceae plant Alnus japonica, which is indigenous to Korea, has been used as a popular folk medicine for hepatitis and cancer. However, the preventive effect of Alnus japonica leaf extracts on alcohol-related liver damage has not been investigated. The objective of this study was to investigate the hepatoprotective effects of the extracts of Alnus japonica leaf (AJL) against ethanol-induced liver damage in HepG2/2E1 cells. Treatment with AJL significantly prevented ethanol-induced cytotoxicity in HepG2/2E1 cells by reducing the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This protective effect was likely associated with antioxidant potential of AJL, as evidenced by the attenuation of reactive oxygen species (ROS) and malondialdehyde (MDA) production and restoration of the depleted glutathione (GSH) levels in ethanol-induced HepG2/2E1 cells. Our findings suggest that FCC might be considered as a useful agent in the prevention of liver damage induced by oxidative stress by increasing the antioxidant defense mechanism.

Folic acid supplementation reduces oxidative stress and hepatic toxicity in rats treated chronically with ethanol

  • Lee, Soo-Jung;Kang, Myung-Hee;Min, Hye-Sun
    • Nutrition Research and Practice
    • /
    • v.5 no.6
    • /
    • pp.520-526
    • /
    • 2011
  • Folate deficiency and hyperhomocysteinemia are found in most patients with alcoholic liver disease. Oxidative stress is one of the most important mechanisms contributing to homocysteine (Hcy)-induced tissue injury. However it has not been examined whether exogenous administration of folic acid attenuates oxidative stress and hepatic toxicity. The aim of this study was to investigate the in vivo effect of folic acid supplementation on oxidative stress and hepatic toxicity induced by chronic ethanol consumption. Wistar rats (n = 32) were divided into four groups and fed 0%, 12%, 36% ethanol, or 36% ethanol plus folic acid (10 mg folic acid/L) diets. After 5 weeks, chronic consumption of the 36% ethanol diet significantly increased plasma alanine transaminase (ALT) (P < 0.05) and aspartate transaminase (AST) (P < 0.05), triglycerides (TG) (P < 0.05), Hcy (P < 0.001), and low density lipoprotein conjugated dienes (CD) (P < 0.05) but decreased total radical-trapping antioxidant potential (TRAP) (P < 0.001). These changes were prevented partially by folic acid supplementation. The 12% ethanol diet had no apparent effect on most parameters. Plasma Hcy concentration was well correlated with plasma ALT (r = $0.612^{**}$), AST (r = $0.652^*$), CD (r = $0.495^*$), and TRAP (r = $-0.486^*$). The results indicate that moderately elevated Hcy is associated with increased oxidative stress and liver injury in alcohol-fed rats, and suggests that folic acid supplementation appears to attenuate hepatic toxicity induced by chronic ethanol consumption possibly by decreasing oxidative stress.

Biological Safety and Anti-hepatofibrogenic Effects of Brassica rapa (Turnip) Nanoparticle

  • Park, Dae-Hun;Li, Lan;Jang, Hyung-Kwan;Kim, Young-Jin;Jang, Ja-June;Choi, Yeon-Shik;Park, Seung-Kee;Lee, Min-Jae
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.317-322
    • /
    • 2009
  • Hepatic fibrosis is one of chronic liver diseases which spread in worldwide and it has high risk to turn advanced cirrhosis and hepatocellualr carcinoma. Brassica family has been produced for commercial purpose and in Korea Brassica rapa (Turnip) is cultivated in Ganghwa County, Gyeonggi-do Korea and used for making Kimchi. Recently pharmacological effects of turnip have been known; diabete mellitus modulation, alcohol oxidization, and fibrosis inhibition. In previous study we found antifibrogenic effect of turnip water extract and in this study we made turnip nanoparticle to promote turnip delivery into liver. At the same time we assessed the biological safety of turnip nanoparticle. Thioacetamide (TAA) induced hepatic nodular formation and fibrosis (mean of fibrosis score: 4). However, 1% turnip nanoparticle inhibited TAA-induced hepatic nodular formation and fibrosis (mean of fibrosis score: 2-3). Activities of serum enzymes (aspartic acid transaminase (AST), alanine transaminase (ALT), and total bilirubin (T-Bil)), complete blood count (CBC), and the appearance of organs were not different from control and 1% turnip nanoparticle treatment. Conclusively 1% turnip nanoparticle significantly reduced TAA-induced hepatic fibrosis and was safe in 7-weeks feeding.

The experimental evidences of steamed and freeze-dried mature silkworm powder as the calorie restriction mimetics

  • Kim, Kee-Young;Osabutey, Angelina F.;Nguyen, Phuong;Kim, Soo Bae;Jo, You-Young;Kweon, HaeYong;Lee, Hyun-Tai;Ji, Sang-Deok;Koh, Young Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Steamed and freeze-dried mature silkworm powder (SMSP) is a natural food containing a large amount of various functional materials and has various health promoting effects. SMSP is known to increase the life expectancy and healthspan, simultaneously. The accomplishment of extension of healthspan should be possible to achieve by activating various signaling pathways delaying aging in various tissues, not by regulating only a few signaling pathways. Consistent with this notion, SMSP increased the resistant to Parkinson disease by enhancing olfaction and mitochondrial activity in neurons of animal models. In addition, SMSP could enhance the gastrointestinal functions. The animals consumed SMSP showed enhanced alcohol metabolisms, reduced cholesterols in bloods, increased resistance to carcinogens causing liver cancers, and protective effects in alcohol induced stomach ulcers. Furthermore, SMSP was also effective in appearance. The SMSP consumed animals showed reduced skin pigmentations and more hair growth compared with control animals. Taken together, the functional enhancement effects of SMSPs in various tissues and organs, which have been discovered to date, are combined to extend healthspan. Therefore, SMSP can be regarded as calorie restriction mimetics. Further studies in the health promoting effects of SMSP will contribute to identifying new applicable diseases, resulted in increased sales of SMSP and incomes of sericulture farmers.

Inhibition of Aldehyde Dehydrogenase by the Active Oxygen Species (활성산소종에 의한 알데히드 탈수소 효소의 불활성화)

  • 문전옥;김태완;백기주;김기헌
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.647-658
    • /
    • 1993
  • The susceptibilities of aldehyde dehydrogenase (AldDH) and alcohol dehydrogenase (ADH) to active oxygen generated by xanthine-xanthine oxidase (XOD) system were studied. Incubation of AldDH with 2$\times$10$^{-3}$ units of XOD for 30 min at $25^{\circ}C$ resulted in the decrease of enzyme activity to 30% and it was inactivated completely when incubated with 5$\times$10$^{-3}$ units of XOD. Whereas 70% of ADH activity was retained after exposure to 5$\times$10$^{-3}$ units of XOD for 30 min, 40% of ADH activity was retained after exposure to 5$\times$10$^{-2}$ unit of XOD for 30 min. This inhibition effect by the active oxygen was preventable by catalase and glutathione, but not by SOD. The rates of the NADPH-dependent oxygen consumption by the liver S-9 mixture and microsomes were also determined in this study. Rate of oxygen consumption is increased in the liver S-9 mix and microsomes from phenobarbital-treated rat, and it was consistent with increased lipid peroxidation. In the presense of ethanol as a substrate, the oxygen consumption rates were increased. It is reported that hepatic AldDH activity is depressed in alcoholic liver diseases, however there is few report that explains the reason of depressed AldDH activity. These results are supportive of the theory that the increase in hepatic ethanol oxidation through the induced ME activity after chronic ethanol feeding generate oxygen radical at elevated rates and it leads to the depression of AldDH activity.

  • PDF

A Review on the Report about Drug-induced Hepatitis published by the National Institute of Toxicological Research (국립독성연구원 보고서 '식이유래 독성간염의 진단 및 보고체계 구축을 위한 다기관 예비연구'에 대한 분석 및 고찰)

  • Jang Insoo
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.78-89
    • /
    • 2004
  • Background : A report published by the National Institute of Toxicological Research (NITR) in January 2004 about toxic hepatitis in Korea contained the result of analysis on 55 cases of severe toxic hepatitis from 7 university hospitals for 8 months. NITR claimed that the extrapolated annual frequency of severe toxic hepatitis in Korea was 1904 cases per year. They also claimed that the most frequent etiology of severe toxic hepatitis were herbal medications and similar plant preparations (61.7%), contrasted with traditional therapeutic preparations and healthy foods (29.1%). I have investigated that report to be certain of the result because it is a very important subject for public health and society in Korea. Results : The NITR report has too many problems to have faith in its results. They include the following: 1. The report uses only 55 cases to estimate annual prevalence rate of severe toxic hepatitis in Korea. 2. There was a large regional preponderancy in the NITR report (2 cases in Seoul from a population of 10.17 million, 19 cases in Gwangju from a population of 1.4 million) 3. There was another preponderancy that selected much fewer cases caused by western medication (9.1%) than other reasons. 4. The NITR report used a modified scale than that officially recognized to diagnose toxic hepatitis. 5. There was a mistake using the scale to adapt the right indications. 6. They collected cases before beginning the study, although it was a prospective study. There was also not any questionnaire or other materials concerned with alcohol, drugs, or history of past liver disease. Conclusions : NITR is one of the important official arms of the government of Korea. Nevertheless, there is a severe problem in validity because of selection bias, uncertain accuracy, and insufficiency of raw materials in the report. Therefore it seems incorrect to generalize the results of the report and there is a lack of confidence in it as a national study publishing by the NITR.

  • PDF

Hepatoprotcetive Effects of Oyster (Crassostrea gigas) Extract in a Rat Model of Alcohol-Induced Oxidative Stress (알코올로 유도된 간 손상 동물모델에서 굴 추출물의 간 보호 효과)

  • Osaki, Kenji;Arakawa, Teruaki;Kim, Bumsik;Lee, Minjae;Jeong, Changsik;Kang, Namgil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.805-811
    • /
    • 2016
  • This study was conducted to investigate the protective effects of water extract from Crassostrea gigas (CGW) against ethanol-induced hepatic toxicity in rats. Seventy-two male Wistar rats (6-week-old) were divided into six groups of 12 animals each: control group (1 mL saline/d), ethanol-treated group, positive control group (ethanol+Hovenia dulcis Thunb extract), CGWL group (ethanol+low dosage of CGW), CGWM group (ethanol+medium dosage of CGW), and CGWH group (ethanol+high dosage of CGW). All groups except the control group received ethanol (40% ethanol 5 g/kg) orally. CGW administration with ethanol resulted in prevention of ethanol-induced hepatotoxicity by increasing levels of serum alanine aminotransferase and ${\gamma}-glutamyltransferase$. CGW supplementation significantly reduced formation of malonaldehyde and inhibited reduction of hepatic glutathione and peroxidase levels, as compared with the ethanol-administration group. Further, CGW suppressed expression of CYP2E1, which was elevated by ethanol administration. Consequently, our results indicate that Crassostrea gigas may exert hepatoprotective effects against alcohol-induced hepatocyte injury by intensifying the anti-oxidative defense system.

Gentiopicroside Ameliorates the Progression from Hepatic Steatosis to Fibrosis Induced by Chronic Alcohol Intake

  • Yang, Hong-Xu;Shang, Yue;Jin, Quan;Wu, Yan-Ling;Liu, Jian;Qiao, Chun-Ying;Zhan, Zi-Ying;Ye, Huan;Nan, Ji-Xing;Lian, Li-Hua
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.320-327
    • /
    • 2020
  • In current study, we aimed to investigate whether the gentiopicroside (GPS) derived from Gentiana manshurica Kitagawa could block the progression of alcoholic hepatic steatosis to fibrosis induced by chronic ethanol intake. C57BL/6 mice were fed an ethanol-containing Lieber-DeCarli diet for 4 weeks. LX-2 human hepatic stellate cells were treated with GPS 1 h prior to transforming growth factor-β (TGF-β) stimulation, and murine hepatocyte AML12 cells were pretreated by GPS 1 h prior to ethanol treatment. GPS inhibited the expression of type I collagen (collagen I), α-smooth muscle actin (α-SMA) and tissue inhibitor of metal protease 1 in ethanol-fed mouse livers with mild fibrosis. In addition, the imbalanced lipid metabolism induced by chronic ethanol-feeding was ameliorated by GPS pretreatment, characterized by the modulation of lipid accumulation. Consistently, GPS inhibited the expression of collagen I and α-SMA in LX-2 cells stimulated by TGF-β. Inhibition of lipid synthesis and promotion of oxidation by GPS were also confirmed in ethanol-treated AML12 cells. GPS could prevent hepatic steatosis advancing to the inception of a mild fibrosis caused by chronic alcohol exposure, suggesting GPS might be a promising therapy for targeting the early stage of alcoholic liver disease.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.