• Title/Summary/Keyword: Alcohol Dehydrogenase gene

Search Result 67, Processing Time 0.031 seconds

Isolation and characterization of a novel short-chain alcohol dehydrogenase gene from Panax ginseng

  • Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Dae-Young;Sun, Hwa;In, Jun-Gyo;Yang, Deok-Chun
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.673-678
    • /
    • 2009
  • The cDNA of alcohol dehydrogenase (PgADH) was isolated and characterized from the leaf of Panax ginseng. The cDNA had an open reading frame of 801 bp and a deduced amino acid sequence of 266 residues. The calculated molecular mass of the mature protein is approximately 29 kDa with a predicated isoelectric point of 6.84. Homology analysis revealed that the deduced amino acid of PgADH shares a high degree of homology with the short-chain ADH proteins of other plants. Genomic DNA hybridization analysis indicated that PgADH represents a multi-gene family. The expression of PgADH under various environmental stresses was analyzed at different time points using real-time PCR. ABA, SA and especially JA (80-fold) significantly induced PgADH expression within 24 h of treatment. The positive responses of PgADH to abiotic stimuli suggest that ginseng ADH may protect against hormone-related environmental stresses.

Regulation of Cinnamyl Alcohol Dehydrogenase (CAD) Gene Family in Lignin Biosynthesis (리그닌 생합성에서 cinnamyl alcohol dehydrogenase (CAD) 유전자 family의 조절)

  • Kim, Young-Hwa;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.944-953
    • /
    • 2021
  • Lignin is a complex phenylpropanoid polymer abundant in the cell walls of vascular plants. It is mainly presented in conducting and supporting tissues, assisting in water transport and mechanical strength. Lignification is also utilized as a defense mechanism against pathogen infection or wounding to protect plant tissues. The monolignol precursors of lignin are synthesized by cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes cinnamaldehydes to cinnamyl alcohols, such as p-coumaryl, coniferyl, and sinapyl alcohols. CAD exists as a multigenic family in angiosperms, and CAD isoforms with different functions have been identified in different plant species. Multiple isoforms of CAD genes are differentially expressed during development and upon environmental cues. CAD enzymes having different functions have been found so far, showing that one of its isoforms may be involved in developmental lignification, whereas others may affect the composition of defensive lignins and other wall-bound phenolics. Substrate specificity appears differently depending on the CAD isoform, which contributes to revealing the biochemical properties of CAD proteins that regulate lignin synthesis. In this review, details regarding the expression and regulation of the CAD family in lignin biosynthesis are discussed. The isoforms of the CAD multigenic family have complex genetic regulation, and the signaling pathway and stress responses of plant development are closely linked. The synthesis of monolignol by CAD genes is likely to be regulated by development and environmental cues as well.

The Effect of Low-Temperature on Alcohol Dehydrogenase Isozyme Variations in Italian ryegrass Varieties (저온이 이탈리안 라이그라스의 품종별 ADH Isozyme 변이에 미치는 영향)

  • 이성규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 1995
  • This study was planned to identify the effect of low-temperature stress on Alcohol dehydrogenase(ADH) isozyme in sixteen varieties of Italian ryegrass using starch gel electrophoresis. The specific electrophoretic zymograms of each variety were observed by ADH isozyme. The results were summarized as follows: 1. All tested varieties displayed two band zone by ADH and R.f values were 0.63 and 0.60, respectively. 2. There were four band type for ADH isozyme of 16 varieties classified with ADH isozyme dyeing intensity. According to dyeing intensity 7, 2, 1 and 6 varieties belong to banding type I,II,III and IV, respectively(Fig.2-A, B). 3. The effect of short tern low-temperature stress induces ADH gene expresson in Italian ryegrass, which may reflect a fundmental shift in energy metabolism to ensure plant tissue survival during the low-temperature stress period.

  • PDF

Identification and Characterization of Protein Encoded by orf382 as $\small{L}$-Threonine Dehydrogenase

  • Ma, Fei;Wang, Tianwen;Ma, Xingyuan;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.748-755
    • /
    • 2014
  • In the genome annotation of Escherichia coli MG1655, the orf382 (1,149 bp) is designated as a gene encoding an alcohol dehydrogenase that may be Fe-dependent. In this study, the gene was amplified from the genome by PCR and overexpressed in Escherichia coli BL21(DE3). The recombinant $6{\times}$His-tag protein was then purified and characterized. In an enzymatic assay using different hydroxyl-containing substrates (n-butanol, $\small{L}$-threonine, ethanol, isopropanol, glucose, glycerol, $\small{L}$-serine, lactic acid, citric acid, methanol, or $\small{D}$-threonine), the enzyme showed the highest activity on $\small{L}$-threonine. Characterization of the mutant constructed using gene knockout of the orf382 also implied the function of the enzyme in the metabolism of $\small{L}$-threonine into glycine. Considering the presence of tested substrates in living E. coli cel ls and previous literature, we believed that the suitable nomenclature for the enzyme should be an $\small{L}$-threonine dehydrogenase (LTDH). When using $\small{L}$-threonine as the substrate, the enzyme exhibited the best catalytic performance at $39^{\circ}C$ and pH 9.8 with $NAD^+$ as the cofactor. The determination of the Km values towards $\small{L}$-threonine (Km = $11.29{\mu}M$), ethanol ($222.5{\mu}M$), and n-butanol ($8.02{\mu}M$) also confirmed the enzyme as an LTDH. Furthermore, the LTDH was shown to be an ion-containing protein based on inductively coupled plasma-atomic emission spectrometry with an isoelectronic point of pH 5.4. Moreover, a circular dichroism analysis revealed that the metal ion was structurally and enzymatically essential, as its deprivation remarkably changed the ${\alpha}$-helix percentage (from 12.6% to 6.3%).

Comparative Studies on Polymorphism and Fithess between Two ADH Alleles in Drosophila melanogaster (Deosophila melanogadter의 ADH Polymorphism 과 두 유전자 사이의 적응성에 관한 비교 연구)

  • 최영헌;유미애;이원호
    • Korean journal of applied entomology
    • /
    • v.33 no.3
    • /
    • pp.141-147
    • /
    • 1994
  • Tne present studies were camied out to ~nvestigate the allele frequency variations of alcohol dehydrogenase (ADH) in natural populat~ons of Drosophiio melonogoster and the correlations of iwo ADH alleles between fitness and ethanol. ADH alleles were found to be polymorphic in natural populations of D. rnelanogaster. The frequencies of FF, FS and SS genotypes were 47.66, 42 18, and 10.16%. respectively, therefore the F gene frequency (68.75) was shown to be hlgher than the S gene (31.25 %). The FF genotype was slightly superior to the SS genotype in both fecundiiy and eclaslon. The frequency of AdhF allele in the small alt>fic~apl opulaliow originated from natural populations was increased for 20 generations on normal media at 25$^{\circ}$C In resistance to ethanol, the FF genotype was supenor to the SS genotype, too. It meant that ethanol as environmental factor might be the selective factor on ADH locus in natural populat~ons of D meionogoster.

  • PDF

Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Candida albicans

  • Kang, Sa-Ouk;Kwak, Min-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.79-91
    • /
    • 2021
  • γ-Glutamylcysteine synthetase (Gcs1) and glutathione reductase (Glr1) activity maintains minimal levels of cellular methylglyoxal in Candida albicans. In glutathione-depleted Δgcs1, we previously saw that NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase (Adh1) are the most active methylglyoxal scavengers. With methylglyoxal accumulation, disruptants lacking MGD1 or ADH1 exhibit a poor redox state. However, there is little convincing evidence for a reciprocal relationship between methylglyoxal scavenger genes-disrupted mutants and changes in glutathione-(in)dependent redox regulation. Herein, we attempt to demonstrate a functional role for methylglyoxal scavengers, modeled on a triple disruptant (Δmgd1/Δadh1/Δgcs1), to link between antioxidative enzyme activities and their metabolites in glutathione-depleted conditions. Despite seeing elevated methylglyoxal in all of the disruptants, the result saw a decrease in pyruvate content in Δmgd1/Δadh1/Δgcs1 which was not observed in double gene-disrupted strains such as Δmgd1/Δgcs1 and Δadh1/Δgcs1. Interestingly, Δmgd1/Δadh1/Δgcs1 exhibited a significantly decrease in H2O2 and superoxide which was also unobserved in Δmgd1/Δgcs1 and Δadh1/Δgcs1. The activities of the antioxidative enzymes erythroascorbate peroxidase and cytochrome c peroxidase were noticeably higher in Δmgd1/Δadh1/Δgcs1 than in the other disruptants. Meanwhile, Glr1 activity severely diminished in Δmgd1/Δadh1/Δgcs1. Monitoring complementary gene transcripts between double gene-disrupted Δmgd1/Δgcs1 and Δadh1/Δgcs1 supported the concept of an unbalanced redox state independent of the Glr1 activity for Δmgd1/Δadh1/Δgcs1. Our data demonstrate the reciprocal use of Eapx1 and Ccp1 in the absence of both methylglyoxal scavengers; that being pivotal for viability in non-filamentous budding yeast.

Effects of Chungganhaeju-tang on Gene Expression of Alcohol-metabolizing Enzymes and Alcohol-induced Apoptosis (청간해주탕(淸肝解酒湯)이 alcohol 대사관련 유전자 및 apoptosis에 미치는 영향)

  • Kim Young-Tae;Kim Young-Chul;Woo Hong-Jung;Lee Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.123-133
    • /
    • 2003
  • Objectives : This study was designed to investigate the effects of Chungganhaeju-tang on expression of alcohol metabolizing enzymes, cell viability and alcohol-induced apoptosis. Materials and Methods : For this study, the human hepatoma cell line HepG2 was used. HepG2 cells were treated with ethanol-or acetaldehyde, chungganhaeju-tang, anti-Fas neutralizing antibody and were investigated by using quantitative RT-PCR, MTT and Trypan blue exclusion assays. Results : The results are summarized as follows: 1. Quantitative RT-PCR analysis demonstrated that ethanol-or acetaldehyde-mediated increase of ALDH gene expression was not affected by Chungganhaeju-tang treatment. 2, Ethanol-or acetaldehyde-induced apoptosis was remarkably inhibited by Chungganhaeju-tang in a dose-dependent manner. 3, Ethanol-or acetaldehyde-induced apoptosis was significantly blocked by anti-FasL neutralizing antibody, suggesting apoptosis induced by alcohol might be mediated by FasL/Fas signaling pathway. Conclusions : Taken all together, these results indicate that the FasL/Fas signaling plays a critical role in alcohol-induced apoptosis and Chungganhaeju-tang increases viability of liver cells by suppression of the FasL/Fas-mediated apoptosis-signaling pathway.

  • PDF

Overexpression, Purification, and Characterization of $\beta$-Subunit of Group II Chaperonin from Hyperthermophilic Aeropyrum pernix K1

  • Shin, Eun-Jung;Lee, Jin-Woo;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.542-549
    • /
    • 2010
  • In the present study, overexpression, purification, and characterization of Aeropyrum pernix K1 chaperonin B in E. coli were investigated. The chaperonin $\beta$-subunit gene (ApCpnB, 1,665 bp ORF) from the hyperthermophilic archaeon A. pernix K1 was amplified by PCR and subcloned into vector pET21a. The constructed pET21a-ApCpnB (6.9 kb) was transformed into E. coli BL21 Codonplus (DE3). The transformant cell successfully expressed ApCpnB, and the expression of ApCpnB (61.2 kDa) was identified through analysis of the fractions by SDS-PAGE (14% gel). The recombinant ApCpnB was purified to higher than 94% by using heat-shock treatment at $90^{\circ}C$ for 20 min and fast protein liquid chromatography on a HiTrap Q column step. The purified ApCpnB showed ATPase activity and its activity was dependent on temperature. In the presence of ATP, ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}$ and $50^{\circ}$, respectively. Specifically, the activity of malate dehydrogenase (MDH) at $85^{\circ}$ was greatly stabilized by the addition of ApCpnB and ATP. Coexpression of pro-carboxypeptidase B (pro-CPB) and ApCpnB in E. coli BL21 Codonplus (DE3) had a marked effect on the yield of pro-CPB as a soluble and active form, speculating that ApCpnB facilitates the correct folding of pro-CPB. These results suggest that ApCpnB has both foldase and holdase activities and can be used as a powerful molecular machinery for the production of recombinant proteins as soluble and active forms in E. coli.

Metabolic Engineering of the Thermophilic Bacteria, Bacillus stearothermophilus, for Ethanol Production

  • Jo, Gwang-Myeong;Ingram, Lonnie O.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.56-59
    • /
    • 2000
  • Thermophilic bacterium, Bacillus stearothermophilus NUB3621, was engineered to produce ethanol from glucose by introducing cloned thermostable pyruvate decarboxylase and alcohol dehydrogenase genes. A novel promoter sequence was screened and used for the enhancement of these two enzymes. Successful redirection of metabolic flux into ethanol was obtained. In addition, gene expression profiling using Bacillus subtilis DNA microarray was analyzed to overcome the intrinsic low glucose utilization of B.stearothermophilus. Many known and unknown genes were identified to be up or down regulated under glucose-containing media.

  • PDF

Expression of Human ALDH2 Gene in escherichia coli (대장균에서 사람 ALDH2 유전자의 발현)

  • 곽보연;이기환;정한승
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.268-271
    • /
    • 1997
  • Human mitochondrial aldehyde dehydrogenase(ALDH2) is mainly responsible for the oxidation of acetaldehyde generated during alcohol oxidation in vivo. To investigate the role of ALDH2 in alcohol metabolism, it was needed to get solubilized enzyme. The cDNA of ALDH2 is isolated from cDNA library and ligated to several expression vectors for E. coli. At almost expression system to be constructed, the broad expression band of ALDH2 was detected. But, the large part of the expressed protein consisted as inclusion body, the yield of solubilized enzyme was not more tan 5% of the total expressed amount. Recombinant ALDH2 was verified from the several expression systems.

  • PDF