• Title/Summary/Keyword: Al_2\

Search Result 16,086, Processing Time 0.045 seconds

Effect of Al Addition on Fatigue Properties of Austenitic Fe-25Mn-Al-0.5C steels (오스테나이트계 Fe-25Mn-Al-0.5C강의 피로성질에 미치는 Al 첨가의 영향)

  • Do, Jeong-Ho;Jeon, Chae-Hong;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.274-282
    • /
    • 1998
  • The effect of Al addition on the fatigue properties of austenitic Fe-25Mn-Al-0.5C steels was studied. When Al was not added to the Fe-25Mn 0.5C steel, the strain induced ${\varepsilon}$ martensites, deformation twins and slip bands were formed during fatigue deformation. When 2wt% of Al was added to the steel, the deformation twins and slip bands were formed during fatigue deformation. When 5wt% of Al was added, only slip bands were formed. In low cycle fatigue test, the alloys containing 0wt% and 2wt%Al showed the cyclic hardening due to ${\varepsilon}$ martensites and deformation twins, resulting in shorter fatigue lives than the alloy containing 5wt%Al. In fatigue crack propagation test, the alloy without Al showed the highest crack propagation rate. The fracture surface of the alloy without Al was flat, whereas that of the alloy with 2% or 5%Al was rough. The ${\Delta}K_{th}$, values of the alloys with 0%, 2% and 5%Al were 16, 17.5, and $20.5MPam^{1/2}$, respectively.

  • PDF

CaO Crucible Induction Melting and Investment Casting of TiAl Alloys (TiAl 합금의 CaO 도가니 유도용융 및 정밀주조)

  • Kim, Myoung-Gyun;Sung, Si-Young;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

Electrochemical Performances of LiMn2O4:Al Synthesized by Solid State Method (고상법으로 합성한 LiMn2O4:Al의 전기화학적 특성)

  • Park, Hye-Jung;Park, Sun-Min;Roh, Gwang-Chul;Han, Cheong-Hwa
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Al doped $LiMn_2O_4$ ($LiMn_2O_4:Al$) synthesized by several Al doping process and Solid State method. The Al contents in $Mn_{1-x}Al_xO_2$ for $LiMn_2O_4:Al$ were analyzed 1.7 wt% by EDS. The $LiMn_2O_4:Al$ confirmed cubic spinel structure and approximately 5 ${\mu}m$ particles regardless of three kinds of doping process by solid state method. In the result of electrochemical performances, initial discharge capacity had 115 mAh/g in case of $LiMn_2O_4$ and 111 mAh/g of $LiMn_2O_4:Al$ after 100th cycle at room temperature. But the capacity retention results showed that $LiMn_2O_4$ and $LiMn_2O_4:Al$ were 44% and 69% respectively in the 100th cycle at 60$^{\circ}C$. Therefore we are confirmed that $LiMn_2O_4:Al$ increased the capacity retention about 25% than $LiMn_2O_4$, thus the effect of Al dopping on $LiMn_2O_4$ capacity retention.

Formation of $FeAl_2O_4$ in $H_2-CO_2$ and its behavior in $CO_2$(I) ($H_2-CO_2$에서 $FeAl_2O_4$의 생성기구와 $CO_2$ 중에서의 거동(I))

  • 이홍림;강명구
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 1982
  • $FeAl_2O_4$ was formed from the starting material of $Fe_2O_3$ and $Al_2O_3$ by controlling the oxygen partial pressure using $H_2-CO_2$ gas mixture, over the temperature range of 800~120$0^{\circ}C$. The formation mechanism of $FeAl_2O_4$ was found to be a second order chemical reaction, and the activation energy of formation was observed as 39.97 kcal/mole. Vaporization behavior of $FeAl_2O_4$ under $CO_2$ atmosphere was observed over the temperature range of 800~120$0^{\circ}C$. $FeAl_2O_4$ was vaporized by a second order chemical reaction and the activation energy was found to be 21.8kcal/mole. Electrical conductivity of $FeAl_2O_4$ was also measured.

  • PDF

Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동)

  • 황규홍;박정환;윤태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

The oxidation of Fe-(21.8, 24.1, 27.2)%Al intermetallics (Fe-(21.8, 24.1, 27.2)%Al 금속간 화합물의 고온 산화)

  • 김기영;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Pure $Fe_3$Al alloys with three different compositions of Fe-21.8%Al, Fe-24.1%Al and Fe-27.2%Al were prepared by vacuum induction melting followed by homogenization and hot forging. The long-time oxidation behavior of the prepared alloys was studied at 1073, 1273 and 1473k in air. The oxidation resistance greatly increased with an increase in Al contents. Thin and uniform oxide scales were always formed on Fe-27.2%Al, while thick and fragile oxide scales were formed on Fe-(21.8, 24.1%)Al. Internal oxidation was observed in Fe-(21.8, 24.1%)Al, when oxidized above 1273K. The major oxidation product of all the oxidized alloys was always $\alpha$-$Al_2$$O_3$.

  • PDF

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

Low-temperature sintering and microwave dielectric properties of $ZnAl_2O_4$ with ZnO-$B_2O_3-SiO_2$ glass (ZnO-$B_2O_3-SiO_2$ 유리가 첨가된 $ZnAl_2O_4$의 저온 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Lee, Joo-Sik;Kim, Kyung-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.265-265
    • /
    • 2007
  • In the present work, we have studied low temperature sintering and microwave dielectric properties of $ZnAl_2O_4$-zinc borosilicate (ZBS, 65ZnO-$25B_2O_3-10SiO_2$) glass composites. The focus of this paper was on the improvement of sinterability, low dielectric constant, and on the theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-ZBS glass composites, respectively. The $ZnAl_2O_4$ with 60 vo1% ZBS glass ensured successful sintering below $900^{\circ}C$. It is considered that the non-reactive liquid phase sintering (NPLS) occurred. In addition, $ZnAl_2O_4$ was observed in the $ZnAl_2O_4$-(x)ZBS composites, indicating that there were no reactions between $ZnAl_2O_4$ and ZBS glass. $ZnB_2O_4\;and\;Zn_2SiO_4$ with the willemite structure as the secondary phase was observed in the all $ZnAl_2O_4$-(x)ZBScomposites. In terms of dielectric properties, the application of the $ZnAl_2O_4$-(x)ZBS composites sintered at $900^{\circ}C$ to LTCC substrate were shown to be appropriate; $ZnAl_2O_4$-60ZBS (${\varepsilon}_r$= 6.7, $Q{\times}f$ value= 13,000 GHz, ${\tau}_f$= -30 ppm/$^{\circ}C$). Also, in this work was possible theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-(x)ZBS composites.

  • PDF

In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures (Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조)

  • Ha, Jung-Soo;Han, Yoo-Jeong
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • A powder mixture of 70 wt% $Al_2O_3$ and 30 wt% hydroxyapatite (HA) is sintered at $1300^{\circ}C$ or $1350^{\circ}C$ for 2 h at normal pressure. An $MgF_2$-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without $MgF_2$ show ${\alpha}$ & ${\beta}$-tricalcium phosphates (TCPs) and $Al_2O_3$ phases with no HA at either of the sintering temperatures. In the case of $1,350^{\circ}C$, a $CaAl_4O_7$ phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and $1,350^{\circ}C$, respectively. Because the decomposition of HA produces a $H_2O$ vapor, fewer large pores of $5-6{\mu}m$ form at $1,300^{\circ}C$. The $MgF_2$-added samples show FA and $Al_2O_3$ phases with no TCP. Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and $1,350^{\circ}C$, respectively. No large pores are observed, and the grain size of FA ($1-2{\mu}m$) is bigger than that of TCP ($0.7{\mu}m{\geq}$) in the samples without $MgF_2$. The resulting $TCP/Al_2O_3$ and $FA/Al_2O_3$ composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.

Molecular Dynamics Simulation of Al2O3 Grain Boundaries with CaAl2Si2O8 as Interface Phase (CaAl2Si2O8를 입계상으로 가지는 Al2O3 계면의 분자동력학 시뮬레이션)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.92-98
    • /
    • 2006
  • Molecular dynamics simulations were performed to study interface structures between an $Al_2O_3$ crystalline phase and a interface phase of $CaAl_2Si_2O_8$. We calculated atomic structures and excess interface energies in systems with different thicknesses of the interface film. It was found that excess interface energies at first readily decreased with increasing film thickness, but increased for larger thicknesses of more than 2 nm. The excess energies of $Al_2O_3/CaAl_2Si_2O_8$ interfaces exhibit a minimum at a thickness around 1 nm. In this range of film thicknesses, the atoms in the interface film show a short-range ordered structure and slow diffusion rather than the random structure and rapid diffusion expected to an observation of an equilibrium thickness for interface films in ceramics.