• Title/Summary/Keyword: AlN films

Search Result 496, Processing Time 0.025 seconds

Deposition of $MgB_2$ Thin Films on Alumina-Buffered Si Substrates by using Hybrid Physical-Chemical Vapor Deposition Method (혼성물리화학기상 증착법에 의한 알루미나 완충층을 가진 실리콘 기판 위의 $MgB_2$ 박막제조에 대한 연구)

  • Lee, T.G.;Park, S.W.;Seong, W.K.;Huh, J.Y.;Jung, S.G.;Lee, B.K.;An, K.S.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • [ $MgB_2$ ] thin films were fabricated using hybrid physical-chemical vapor deposition (HPCVD) method on silicon substrates with buffers of alumina grown by using atomic layer deposition method. The growth war in a range of temperatures $500\;{\sim}\;600^{\circ}C$ and under the reactor pressures of $25\;{\sim}\;50\;Torr$. There are some interfacial reactions in the as-grown films with impurities of mostly $Mg_2Si$, $MgAl_2O_4$, and other phases. The $T_c$'s of $MgB_2$ films were observed to be as high as 39 K, but the transition widths were increased with growth temperatures. The magnetization was measured as a function of temperature down to the temperature of 5 K, but the complete Meissner effect was not observed, which shows that the granular nature of weak links is prevailing. The formation of mostly $Mg_2Si$ impurity in HPCVD process is discussed, considering the diffusion and reaction of Mg vapor with silicon substrates.

  • PDF

Growth and characterization of periodically polarity-inverted ZnO structures grown on Cr-compound buffer layers

  • Park, J.S.;Goto, T.;Hong, S.K.;Chang, J.H.;Yoon, E.;Yao, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.259-259
    • /
    • 2010
  • Periodically polarity inverted (PPI) ZnO structures on (0001) Al2O3 substrates are demonstrated by plasmas assisted molecular beam epitaxy. The patterning and re-growth methods are used to realize the PPI ZnO by employing the polarity controlling method. For the in-situ polarity controlling of ZnO films, Cr-compound buffer layers are used.[1, 2] The region with the CrN intermediate layer and the region with the Cr2O3 and Al2O3 substrate were used to grow the Zn- and O-polar ZnO films, respectively. The growth behaviors with anisotropic properties of PPI ZnO heterostructures are investigated. The periodical polarity inversion is evaluated by contrast images of piezo-response microscopy. Structural and optical interface properties of PPI ZnO are investigated by the transmission electron microcopy (TEM) and micro photoluminescence ($\mu$-PL). The inversion domain boundaries (IDBs) between the Zn and the O-polar ZnO regions were clearly observed by TEM. Moreover, the investigation of spatially resolved local photoluminescence characteristics of PPI ZnO revealed stronger excitonic emission at the interfacial region with the IDBs compared to the Zn-polar or the O-polar ZnO region. The possible mechanisms will be discussed with the consideration of the atomic configuration, carrier life time, and geometrical effects. The successful realization of PPI structures with nanometer scale period indicates the possibility for the application to the photonic band-gap structures or waveguide fabrication. The details of application and results will be discussed.

  • PDF

Optical Recording Properties of $(Te_{86}Se_{14})_{50}Bi_{50}$ Thin Films with Trilayer Structure (삼중층 구조를 갖는 $(Te_{86}Se_{14})_{50}Bi_{50}$ 박막의 광기록 특성)

  • Kim, Byeong-Hoon;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.164-167
    • /
    • 1988
  • This paper reports optical properties and hole formation of a 488nm-optimumed trilayer structure utiluzed Te-based thin films as a recording layer, and the application of trilayer to 830nm. The optical recording characteristics of metallic recording media are enhanced significantly by incoporating the metal (Al) layer into an antireflection trilayer structure. Due to the interference condition inherent in the design of the trilayer structure, reflectance from holes is ranked a low fraction. the hole formation is carried out by laser by $Ar^+$ laser(488nm). For 20nsec laser pulse duration, the hole opening threshold power of $(Te_{86}Se_{14})_{50}Bi_{50}$ trilayer is lower than that of monolayor that used in this experiments. Hole shapes of the whole sample were clean. For the application of the diode laser, the thickness of dielectric is varied by$\lambda$/4n. In order to compare the monolayer with the trilayer reflectance was measured.

  • PDF

Polycrystalline silicon films for solar cell application by solution growth (태양전지용 다결정 실리콘 박막의 용액 성장법에 관한 연구)

  • Soo Hong Lee;Martin A. Green
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.119-130
    • /
    • 1994
  • To deposit silicon on borosilicate glass substrates, 18 different substrate combinations were investigated because of the difficulty of direct deposition of silicon. Sucessful results were obtained from Al-and Mg-treated glass and furnace annealed sputtered silicon deposited glass substrates. A continuous silicon thin film on a large area substrates was obtained in the temperatures ranges from $420^{\circ}C to 520^{\circ}C$. These thin films might be applied to lower the cost of solar cells and solar cell modules.

  • PDF

Breakdown Voltage and Electrical Characteristics of Organic Thin Film (유기박막의 파괴전압과 전기특성)

  • Song, Jin-Won;Kang, Yong-Chul;Kim, Hyung-Gon;Lee, Woo-Sun;Chung, Hun-Sang;Chang, Hee-Dong;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1497-1499
    • /
    • 2000
  • We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 30 [mN/m]. LB layers of Arac. acid deposited by LB method were deposited onto y-type silicon wafer as y-type film. In processing of a device manufacture. we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/arachidic acid/Al. the number of accumulated layers are 9$\sim$21. Also. we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from -3 to +3[V]. The insulation property of a thin film is better as the distance between electrodes is larger.

  • PDF

Electrical Properties of Organic PVA Gate Insulator Film on ITO/Glass Substrates (ITO/glass 기판위에 제작된 Cross linked PVA 유기 게이트 절연막의 전기적 특성)

  • Choi, Jin-Eun;Gong, Su-Cheol;Jeon, Hyeong-Tag;Park, Hyung-Ho;Chang, Ho-Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.1-5
    • /
    • 2010
  • The PVA (poly-vinyl alcohol) insulators were spun coated onto ITO coated glass substrates with the capacitors of Glass/ITO/PVA/Al structure. The effects of PVA concentrations (3.0, 4.0 and 5.0 wt%) on the morphology and electrical properties of the films were investigated. As the concentration of PVA increased from 3.0 to 5.0 wt%, the leakage current of device decreased from 17.1 to 0.23 pA. From the AFM measurement, the RMS value decreased with increasing PVA concentration, showing the improvement of insulator film roughness. The capacitances of the films with PVA concentrations of 4.0 and 5.0 wt% were about 28.1 and 24.2 nF, respectively. The lowest leakage current of 1.77 PA was obtained at the film thickness of 117.5 nm for the device with fixed PVA concentration of 5.0 wt%.

Depositions of Pd thin films on poly-crystalline 3C-SiC buffer layers for microsensors (다결정 3C-SiC 완충층위에 마이크로 센서용 Pd 박막 증착)

  • Ahn, Jeong-Hak;Chung, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.175-176
    • /
    • 2007
  • This paper describes on the characteristics of Pd thin films deposited on poly-crystalline 3C-SiC buffer layers for microsensors, in which the poly 3C-SiC was grown on Si, $SiO_2$, and AlN substrates, respectively, by APCVD using HMDS, $H_2$, and Ar gas at $1100^{\circ}C$ for 30 min. In this work, a Pd thin film was deposited on the poly 3C-SiC film by RF magnetron sputter. The thickness, uniformity, and quality of these samples were evaluated by SEM. Crystallinity and orientation of the Pd film were analyzed by XRD. Finally, Pd/poly 3C-SiC schottky diodes were fabricated and characterized by current-voltage measurements. From these results, Pd/poly 3C-SiC devices are promising for high temperature hydrogen sensors and other microsensors.

  • PDF

Studies on the Energy Transfer in LED Containing the Layer made of the Blends of Hole Transporting Polymer and Organic Phosphorescent Dye (정공전달고분자와 유기형광염료의 혼합물 박막이 이용된 발광소자의 에너지 전달특성 연구)

  • Kim, Eugene;Jung, Sook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1192-1198
    • /
    • 2004
  • Hole transporting polymer(poly[N-(p-diphenylamine)phenylmethacrylamide], PDPMA) was doped with nile red dye at various concentrations to study the influence of doping on the energy transfer during light emitting processes. Organic LEDs composed of ITO/blend(PDPMA -nile red)/ Alq$_3$/Al as well as thin films of blend(PDPMA -nile red)/ Alq$_3$ were manufactured for investigating photoluminescence, electroluminescence, and current-voltage characteristics. Atomic Force Microscopy was also used to observe surface morphology of the blend films. It was found that such doping. significantly influences the efficiency of the energy transfer from the Alq$_3$ layer to blended layer and the optical/electrical properties could be optimized by choosing the right concentration of the dye molecule. The results also showed a interesting correlation with the morphological aspect, i.e. the optimum luminescence at the concentration with the least surface roughness. When the concentration of nile red was 0.8 wt%, the maximum energy transfer could be achieved.

Conduction mechanism and fabrication properties of OLEDs using PECCP LB films (PECCP LB 박막을 이용한 유기 전기 발광 소자의 제작과 전도 기구 특성)

  • Lee, Ho-Sik;Shin, Hoon-Kyu;Kwon, Young-Soo;Lee, Won-Jae;Lee, Sung-Il;Park, Jong-Wook;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1090-1093
    • /
    • 2003
  • 최근에 각광을 받고 있는 전기 발광 소자를 Langmuir-Blodgett(LB)법을 이용하여 제작하였다. 사용 시료는 본 연구팀에서 합성을 하였으며, 시료는 PECCP[poly(3,6-N-2-ethylhexyl carbazolyl cyanoterephthalidene)]이며, 이 물질은 반복되는 주쇄에서 강한 전자 주게 그룹과 강한 전자 받게 그룹을 가지고 있다. PECCP 발광층을 제작하는데는 Langmuir-Blodgett(LB)법을 사용하였으며, 누적 층수에 의해 금속/고분자 계면의 특성을 조사하였다. 소자의 구조는 ITO/PECCP LB/Al과 ITO/PECCP LB/$Alq_3$/Al이며, ITO와 $Alq_3$ 사이에 발광층으로써 PECCP LB막을 도입하였다. 여기서 $Alq_3$는 전자 전달 층으로 사용되었다. PECCP LB막의 UV/visible 흡수 피크는 약 410mm에서, PL 피크는 약 536mm에서, 그리고 EL 피크도 역시 약 536nm에서 관찰되었다. 또한 $Alq_3$를 도입한 구조에서의 EL 피크 측정 결과 다양한 발광피크가 관측되었으며, Fowler-Nordheim 분석법을 이용하여 금속의 유기 막에 대한 일함수 값을 계산하였으며, 금속의 유기 막에 대한 일함수 값은 $0.18{\sim}0.26eV$이 계산되었다.

  • PDF

Advances in Absorbers and Reflectors of Amorphous Silicon Oxide Thin Film Solar Cells for Tandem Devices (적층형 태양전지를 위한 비정질실리콘계 산화막 박막태양전지의 광흡수층 및 반사체 성능 향상 기술)

  • Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.115-118
    • /
    • 2017
  • Highly photosensitive and wide bandgap amorphous silicon oxide (a-$SiO_x$:H) films were developed at low temperature ranges ($100{\sim}150^{\circ}C$) with employing plasma-enhanced chemical vapor deposition by optimizing $H_2/SiH_4$ gas ratio and $CO_2$ flow. Photosensitivity more than $10^5$ and wide bandgap (1.81~1.85 eV) properties were used for making the a-$SiO_x$:H thin film solar cells, which exhibited a high open circuit voltage of 0.987 V at the substrate temperature of $100^{\circ}C$. In addition, a power conversion efficiency of 6.87% for the cell could be improved up to 7.77% by employing a new n-type nc-$SiO_x$:H/ZnO:Al/Ag triple back-reflector that offers better short circuit currents in the thin film photovoltaic devices.