• Title/Summary/Keyword: Al7075-T651

Search Result 18, Processing Time 0.027 seconds

Effect of Welding Condition on Tensile Properties of Friction Stir Welded Joints of Al-7075-T651 Plate (용접 조건이 Al-7075-T651의 마찰교반용접부의 인장 특성에 미치는 영향)

  • Kim, C.O.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • This paper investigates the tensile properties of the friction stir welded joints of Al 7075-T651 aluminum plate according to the welding conditions. A 7075-T651 aluminum alloy plate with a thickness of 6.0 mm was used in this investigation. For the friction stir welding (FSW) process, a tool with shoulder diameter of 20 mm and probe diameter of 9 mm was used. The rotation speed and traverse speed conditions were changed in this study, the other welding conditions are constant. The welding direction was aligned with the material rolling direction, and dimension of the FSW plate were $250{\times}100{\times}6\;mm$. As far as this work is concerned, the optimal FSW conditions are determined as the rotation speed, 600 rpm and traverse speed 0.8 mm/sec or the rotation speed, 800 rpm and traverse speed 0.5 mm/sec.

Statistical Distribution of Fatigue Crack Growth Rate for Friction Stir Welded Joints of Al7075-T651 (Al7075-T651의 마찰교반용접된 접합부의 피로균열전파율의 통계적 분포)

  • Ahn, Seok-Hwan;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-93
    • /
    • 2013
  • This paper deals with the effects of driving force and material properties on statistical distribution of fatigue crack growth rate (FCGR) for the friction stir welded joints of Al 7075-T651 aluminum plate. In this work, the statistical probability distribution of fatigue crack growth rate was analyzed by using our previous constant stress intensity factor range controlled fatigue crack growth test data. As far as this study are concerned, the statistical probability distribution of fatigue crack growth rate for the friction stir welded (FSWed) joints was found to evaluate the variability of fatigue crack growth rate for base metal (BM), heat affected zone (HAZ) and weld metal (WM) specimens. The probability distribution of fatigue crack growth rate for FSWed joints was found to follow well log-normal distribution. The shape parameter of BM and HAZ was decreased with increasing the driving force, however, the shape parameter of WM was decreased and increased with increasing the driving force. The scale parameter of BM, HAZ and WM was increased with the driving force.

A Study on Corrosion Fatigue Crack Growth Behavior in Al 7075-T651(II) (Al 7075-T651의 부식피로균열 성장 거동에 관한 연구(II))

  • 한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 1999
  • Fatigue crack growth rates in commercial plate of high strength Al 7075-T651 were investigated for the T-L direction in air, water and sea water. In this paper the effect of cyclic load wave-form(trapezoid and triangle) on fatigue crack growth rates in air, water and sea water environments were investigated using standard LEFM testing procedures. It was founded that the fatigue crack growth behaviors were not affected by cyclic load wave-forms. In region II (stable crack growth region), the fatigue crack growth behaviors were insensitive to cyclic load wave-forms and were sensitive to environment i.e. fatigue crack growth behaviors were higher in sea water than in air for all cyclic load wave-form. The result of fractographical morphology in air, water and sea water by SEM showed obvious dimple rupture and typical striation in air, but transgranular fracture surface in water and sea water. The values m are not affected by corrosion environments but C are different values.

  • PDF

A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I) (Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I))

  • 김봉철;한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

Failure Analysis in Al 7075-T651 Alloy using X-ray Diffraction Technique (X-선 회절을 이용한 A1 7075-T651합금의 파손해소)

  • 오세욱;박수영;부명환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-113
    • /
    • 1993
  • X-ray diffraction analysis technique was used for the fatigue damage analysis and fatigue life prediction in Al 7075-T651 alloy. The tensile test, fatigue strength and fatigue crack propagation test with change of stress ratio were carried out. As a result, half-value breadth was increased with the plastic deformation in the specimen increasint at all test conditions. In particular, half-value breadth at the surface of the specimens fractured by fatigue was increased as stress intensity factor range and effective stress intensity factor range were increased. In addition, the good relationship between half-value breadty and diffraction pattern was shown.

  • PDF

Effect of Specimen Orientation on Fatigue Crack Growth Behavior in Friction Stir Welded Al7075-T651 Joints (마찰교반용접된 Al7075-T651 용접부의 피로균열전파 거동에 미치는 시험편 채취방향의 영향)

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1317-1323
    • /
    • 2014
  • The aim of this paper is to investigate the effects of crack orientation on fatigue crack growth behavior in friction stir welded (FSWed) Al 7075-T651. Fatigue crack growth testing was conducted on compact tension (CT) specimens machined from the friction stir welds and the base metal under constant stress intensity factor range control. Tests were performed with the crack propagating nominally perpendicular to the weld line (termed the TL specimen) and the crack propagating in a parallel direction of the weld line (termed the LT specimen), and with three different constant stress intensity factor ranges. Both these specimen orientations were found to have a considerable effect on the fatigue crack growth behavior. Paris's law was adopted for the analysis of experimental results; the exponent m of the WM-LT specimen was determined to be 3.56, which was the largest value in this experimental conditions.

Investigation of Machined-Surface Condition and Machining Deformation in High-Speed Milling of Thin-Wall Aluminum 7075-T651 (알루미늄 합금(Al7075-T651)의 얇은 벽 고속밀링 가공 시 가공표면 상태와 가공변형 특성)

  • Koo, Joon-Young;Hwang, Moon-Chang;Lee, Jong-Hwan;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • Al alloys are useful materials having high specific strength and are used in machining of parts having thin-walled structures for weight reduction in aircraft, automobiles, and portable devices. In machining of thin-walled structures, it is difficult to maintain dimensional accuracy because machining deformation occurs because of cutting forces and heat in the cutting zone. Thus, cutting conditions and methods need to be investigated and cutting signals need to be analyzed to diagnose and minimize machining deformation and thereby enhance machining quality. In this study, an investigation on cutting conditions to minimize machining deformation and an analysis on characteristics of cutting signals when machining deformation occurs are conducted. Cutting signals for the process are acquired by using an accelerometer and acoustic emission (AE) sensor. Signal characteristics according to the cutting conditions and the relation between machining deformation and cutting signals are analyzed.

Microstructures in friction-stir welded Al 7075-T651 alloy (Al 7075의 마찰교반 용접부 미세조직에 관한 연구)

  • Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

A study on the through crack behavior of aluminum alloy with cantilever beam type under variable load (외팔보 형식의 하중진폭 변화에 대한 Al 합금의 관통균열 거동에 관한 연구)

  • Yoo, Heonil;Kim, Yeob-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.834-842
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 and 5052-H32 aluminum alloy under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure ae investigated by compliance method. The applied stress ratios are R=0.15, 0.0, -0.15 and R=-0.15, 0.0, 0.15. The crack growth rate was found to increase as the load amplitude increases. However,${\bigtriangleup}K_eff$ was almost independent on the stress ratio. The experimental constants of 7075-T651 and 5052-H32 in Paris law were c`=1-1.3${\times}{10^-7},m`=3~3.2 and c`=4~6{\times}{10^-9}, m`=4.3-4.8$, respectively. $K_op$ of 7075-T651 and 5052-H32 becomes smaller as the stress ratio decreases. It seems that the crack closure affects $K_op$.