• Title/Summary/Keyword: Al2O3/Al composite

Search Result 566, Processing Time 0.032 seconds

Preparation of $Al_2O_3/CeO_2$ Composite Abrasives by using Hydrothermal Treatment and its Polishing Properties (수열처리법을 이용한 $Al_2O_3/CeO_2$ composite 연마재 제조 및 연마 특성)

  • Choi, Sung-Hyun;Lee, Seung-Ho;Lim, Hyung-Mi;Kil, Jae-Soo;Choi, Eui-Don
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1278-1282
    • /
    • 2004
  • 수열처리법으로 nano-sized $CeO_2$ 입자를 $Al_3O_3$ 입자의 표면에 균일하게 코팅하여 $AL_2O_3/O_2$ composite 연마 입자를 제조하었다. 제조된 $Al_2O_3\CeO_2$ composite 입자의 뭍성을 TEM, XRD, zeta potential analyzer 및 particle size analyzer로 측징하였다. $Al_2O_3/CeO_2$ composite 입자와 구성된 슬러리와 비교 시료로서 $Al_2O_3$$CeO_2$ 입자를 혼합한 슬러리를 사용하여 thermal oxide film에 대한 연마특성을 평가하였다. 연마슬러리에 포함된 $A1_2O_3/CeO_2$ composite 입자와 $Al_2O_3$$CeO_2$ 혼합입자에서 나노 크기의 세리아 입자가 sub-micron 크기의 알루미나 입자의 표면에 균일하게 코팅되므로서 $Al_2O_3$ 단일 성분의 슬러리에 비해 removal rate(RR)는 106 nm/min, WIWNU는 $8\sim9%$, roughness는 $2.6{\AA}$의 향상된 연마 특성을 나타내었다. 알루미나 입자의 불규칙한 형상 때문에 $Al_2O3/CeO_2$ composite 슬러리와 $Al_2O_3$$CeO_2$ 혼합슬러리의 연마 특성이 비슷한 수준을 나타내었다.

  • PDF

Microstructure and Mechanical Properties of $Al_2O_3$-$ZrO_2$-Nb Composites Prepared by Reaction Sintering (반응소결로 얻어진 $Al_2O_3$-$ZrO_2$-Nb 복합체의 미세구조와 기계적 성질)

  • ;;;R.J. Brook
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.422-428
    • /
    • 1991
  • The reaction sintering of Al2O3-ZrO2-Nb composite has been investigated using Al2O3, and ZrAl2 powders. Two kinds of specimens, 78.3Al2O3-14.0Nb2O5-7.7ZrAl2 in wt.% (AZN-5) and 72.3Al2O3-13.8Nb2O5-7.5ZrAl2-6.4ZrO2(AZN-10), were prepared. Powder compacts were sintered at various temperatures between 1$600^{\circ}C$ and 1$700^{\circ}C$ for 30 min in Ar. DTA and X-ray analysis have showen that a reaction between Nb2O5 and ZrAl2 started at 149$0^{\circ}C$ to form Al2O3, ZrO2, and Nb. The sintered density increased with the sintering temperature. AZN-10 specimen showed higher density than AZN-5 specimen for almost all the experimental conditions. Al2O3-ZrO2-Nb composite hot pressed after reaction sintering showed higher toughness and lower hardness than hot pressed Al2O3-ZrO2. The crack propagated through many metallic Nb particles which showed plastic deformation, and this is the cause of the increase in toughness of Al2O3-ZrO2-Nb composite over Al2O3-ZrO2.

  • PDF

Toughening of SiC Whisker Reinforced Al2O3 Composite (SiC 휘스커 강화 Al2O3 복합재료의 고인화)

  • Kim Yon Jig;Song Jun Hee
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

TEM Microstructure of Al2O3/Ni Nanocomposites by Electroless Deposition (무전해코팅법으로 제조한 Al2O3/Ni 나노 Composite의 TEM 미세조직)

  • 한재길;이재영;김택수;이병택
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.195-200
    • /
    • 2003
  • Ni coated $Al_2O_3$ composite was successfully Prepared by the electroless deposition Process. The average size of Ni particles coated on the $Al_2O_3$ matrix powder was about 20 nm. It was hard to find any reaction compound as an impurity at interface between $Al_2O_3$ and Ni particles after sintering. The characterization of microstructure crystal structure and fracture behavior of the sintered body were investigated using XRD, TEM and Victors hardness tester, and compared with those of the sintered $Al_2O_3$ monolithic body. Many dislocations were observed in the Ni phase due to the difference of thermal expansion coefficient between $Al_2O_3$ and Ni phase, and no observed microcracks at their $Al_2O_3$ and Ni interface. In the $Al_2O_3$/Ni composite, the main fracture mode showed a mixed fracture with intergranular and transgranuluar type having some ,surface roughness. The fracture toughness was slightly increased due to the plastic deformation mechanism of Ni phase in the $Al_2O_3$/Ni composite.

Fabrication of$Al_2O_3/Fe$ composite by reaction sintering (반응소결법에 의한 $Al_2O_3/Fe$ 복합재료 제조)

  • 김송희;윤여범
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.185-190
    • /
    • 1999
  • An $Al_2O_3/Fe$ composite was synthesized through the double stage processes by a reaction sintering which requires simple process and equipments but provides near-net-shape, a reduction/oxidation process for 5 hrs at $650^{\circ}C$ was followed by sintering at $1200^{\circ}C$ to form an $Al_2O_3/Fe$ composite. The composite processed through the double stage sintering are mainly consists of $\alpha$-Fe and ${\alpha}Al_2O_3$ with minor amount of $FeAl_2O_4$, a spinnel structure which is known to prevent Fe from filling up the pores and good contact with $Al_2O_3/Fe$ particles.

  • PDF

Microstructures and Texture of Al/Al2O3 Composites Fabricated by a Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조한 Al/Al2O3 복합재료의 미세조직 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2003
  • Aluminum-based $Al/Al_2O_3$ composites were fabricated by a powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. A mixture of aluminum powder and $Al_2O_3$ particles of which volume content was varied from 5 to 20%, was filled in the tube by tap filling and then rolled by 75% reduction in thickness at ambient temperature. The rolled specimen was then sintered at 56$0^{\circ}C$ for 0.5 h. The mixture of Al powders and $Al_2O_3$ particles was successfully consolidated by the sheath rolling. The $Al/Al_2O_3$ composite fabricated by the sheath rolling showed a recrystallized structure, while unreinforced Al powder compact fabricated by the same procedure showed a deformed structure. The unreinforced Al powder compact was characterized by a deformation (rolling) texture of which main component is {112}<111>, while the $Al/Al_2O_3$ composite showed a mixed texture oi deformation and recrystallization. The sintering resulted in recrystallization in Al powder compact and grain growth in the composite.

Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxide (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성)

  • 이형민;이홍림;조덕호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1212-1218
    • /
    • 1995
  • Al2O3-coated SiC composite powder and mechanically mixed Al2O3-SiC composite powder were synthesized using Al-isopropoxide and commercial SiC as the starting materials. Experiment results showed that the sinterability of Al2O3-coated SiC composite powder was more improved than the mechanically mixed Al2O3-SiC composite powder by the effect of homogeneous coating of alumina around SiC particles. Hence, the mechanical properties of the former was also much more improved than the latter.

  • PDF

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray (플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성)

  • Min Joon-Won;Yoo Seung-Eul;Kim Young-Jung;Suhr Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

Fabrication and mechanical properties of $Al_2O_3/AL$ composites by reactive melt infiltration (반응용융 침투법에 의한 $Al_2O_3/AL$복합재료의 제조 및 기계적 특성 평가)

  • ;;;T. Watari
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.610-618
    • /
    • 1997
  • $Al_2O_3$/Al composite was produced by the infiltration of molten Al Into $Al_2$O$_3$ preform at 900-$1200^{\circ}C$, The process was accelerated by spreading borosilicate glass powder onto the interface between Al powder compact and $Al_2O_3$ preform. Melt infiltration initialed after incubation period, and the growth of infiltration was observed to be linearly propotional with time. The major components of the composite are $Al_2O_3$ and Al with a trace of Si which is remained from borosilicate, the reaction accelerator. Relative density of the composite increased with the particle size of $Al_2O_3$ but decreased with infiltration temperature. As infiltration temperature increases from room to $950^{\circ}C$ higher strength and fracture toughness were obtained.

  • PDF