• 제목/요약/키워드: Al-doped ZnO

검색결과 367건 처리시간 0.038초

PL Property of Al-N Codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.89-92
    • /
    • 2009
  • High-quality Al-N doped p-type ZnO thin films were deposited on Si and buffer layer/Si by DC magnetron sputtering in a mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin films showed a carrier concentration in the range of $1.5{\times}10^{15}{\sim}2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2${\sim}$2.864 ${\Omega}cm$, mobility in the range of 3.99${\sim}$31.6 $cm^2V^{-1}s^{-l}$, respectively. It was easier to dope p-type ZnO films on Si substrates than on buffer layer/Si. The film grown on Si showed the highest quality of photoluminescence (PL) characteristics. The Al donor energy level depth $(E_d)$ of Al-N codoped ZnO films was reduced to about 50 meV, and the N acceptor energy level depth $(E_a)$ was reduced to 63 meV.

Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Lee, Sang-Heon;Kim, Jong Su;Kim, Jin Soo;Kim, Do Yeob;Kim, Sung-O;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1205-1211
    • /
    • 2013
  • The structural and optical properties of the ZnO, Al-doped ZnO, Ga-doped ZnO, and In-doped ZnO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction, photoluminescence (PL) and ultraviolet-visible spectroscopy. All the nanorods grew with good alignment on the ZnO seed layers and the ZnO nanorod dimensions could be controlled by the addition of the various dopants. For instance, the diameter of the nanorods decreased with increasing atomic number of the dopants. The ratio between the near-band-edge emission (NBE) and the deep-level emission (DLE) intensities ($I_{NBE}/I_{DLE}$) obtained by PL gradually decreased because the DLE intensity from the nanorods gradually increased with increase in the atomic number of the dopants. We found that the dopants affected the structural and optical properties of the ZnO nanorods including their dimensions, lattice constants, residual stresses, bond lengths, PL properties, transmittance values, optical band gaps, and Urbach energies.

폴리머 기판상의 Al-doped ZnO 박막의 두께에 따른 특성 변화 (Thickness Dependance of Al-doped ZnO Thin Film on Polymer Substrate)

  • 김봉석;김응권;강현일;이규일;이태용;송준태
    • 한국진공학회지
    • /
    • 제16권2호
    • /
    • pp.105-109
    • /
    • 2007
  • 본 논문에서는 AZO 박막 두께 변화에 따른 구조적, 전기적, 광학적 특성의 영향에 대하여 연구하기 위하여 폴리카보네이트(PC : polycarbonate) 기판 위에 DC 스퍼터링법으로 증착시간을 변화시켜 박막의 두께를 조절하였다. 박막의 두께는 100 nm에서 500 nm까지 100 nm단위로 실험하였으며, 제작된 AZO 박막의 비저항 특성은 four point probe system를 이용하여 측정하였고, 박막의 입자크기, 표면상태를 Environment Secondary Electron Microscopy (ESEM)으로 관찰하였다. 또한 AZO 박막의 결정상태를 조사하기 위하여 High Resolution X-Ray Diffractometer (HR-XRD)를 이용하였고 광학적 투과도는 UV-visible spectrophotometer를 이용하여 분석하였다. 실험 결과 모든 박막에서 90% 이상의 광투과도를 보였으며 400 nm과 500 nm 두께의 AZO 박막에서는 $4.5{\times}10^{-3}\;{\Omega}-cm$의 비저항과 3.61 eV의 광밴드갭 에너지를 보였다.

Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성 (Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition)

  • 안하림;백성호;박일규;안효진
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

원통형 타겟 타입 Pulsed DC Magnetron Sputtering에서 두께 변화에 따른 Al-doped ZnO 박막의 특성 변화 (Thickness Dependent Properties of Al-doped ZnO Film Prepared by Using the Pulsed DC Magnetron Sputtering with Cylindrical Target)

  • 신범기;이태일;박강일;안경준;명재민
    • 한국재료학회지
    • /
    • 제20권1호
    • /
    • pp.47-50
    • /
    • 2010
  • Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dc magnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural, electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO films have (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surface morphology of the films changed according to the film thickness. The samples with higher surface roughness exhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrier concentration revealed that there were no changes for all the film thicknesses. The optical transmittances were more than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity, $4.13\times10^{-4}\Omega{\cdot}cm^{-1}$ was found in 750 nm films with an electron mobility $(\mu)$ of $10.6 cm^2V^{-1} s^{-1}$ and a carrier concentration (n) of $1.42\times10^{21} cm^{-3}$.

Improvement of haze ratio of DC-sputtered ZnO:Al thin films through HF vapor texturing

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.319.1-319.1
    • /
    • 2016
  • Recently, the Al-doped ZnO (ZnO:Al) films are intensively used in thin film a-Si solar cell applications due to their high transmittance and good conductivity. The textured ZnO:Al films are used to enhance the light trapping in thin film solar cells. The wet etch process is used to texture ZnO:Al films by dipping in diluted acidic solutions like HCl or HF. During that process the glass substrate could be damaged by the acidic solution and it may be difficult to apply it for the inline mass production process since it has to be done outside the chamber. In this paper we report a new technique to control the surface morphology of RF-sputtered ZnO:Al films. The ZnO:Al films are textured with vaporized HF formed by the mixture of HF and H2SiO3 solution. Even though the surface of textured ZnO:Al films by vapor etching process showed smaller and sharper surface structures compared to that of the films textured by wet etching, the haze value was dramatically improved. We achieved the high haze value of 78% at the wavelength of 540 nm by increasing etching time and HF concentration. The haze value of about 58% was achieved at the wavelength of 800 nm when vapor texturing was used. The ZnO:Al film texture by HCl had haze ratio of about 9.5 % at 800 nm and less than 40 % at 540 nm. In addition to low haze ratio, the texturing by HCl was very difficult to control etching and to keep reproducibility due to its very fast etching speed.

  • PDF

기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화 (A study on the properties of transparent conductive ZnO:Al films on variaton substrate temperature)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of $O_2$ gas and substrate temperature. When the $O_2$ gas rate of 0.3 and substrate temperature $200^{\circ}C$, ZnO:Al thin film had strongly oriented c-axis and lower resistivity( < $10^{-4}{\Omega}-cm$ ).

  • PDF

Phase Evolution, Microstructure and Microwave Dielectric Properties of Zn1.9-2xLixAlxSi1.05O4 Ceramics

  • Kim, Yun-Han;Kim, Shin;Jeong, Seong-Min;Kim, So-Jung;Yoon, Sang-Ok
    • 한국세라믹학회지
    • /
    • 제52권3호
    • /
    • pp.215-220
    • /
    • 2015
  • Phase evolution, microstructure, and microwave dielectric properties of $Li_2O$ and $Al_2O_3$ doped $Zn_{1.9}Si_{1.05}O_4$, i.e., $Zn_{1.9-2x}Li_xAl_x-Si_{1.05}O_4$, ceramics (x = 0.02 ~ 0.10) were investigated. The ceramics were densified by $SiO_2$-rich liquid phase composed of the Li-Al-Si-O system, indicating that doped Li and Al contributed to the formation of the liquid. As the secondary phase, ${\beta}$-spodumene solid solution with the composition of $LiAlSi_3O_8$ was precipitated from the liquid during the cooling process. The dense ceramics were obtained for the specimens of $$x{\geq_-}0.06$$ showing the rapid densification above $1000^{\circ}C$, implying that a certain amount of liquid is necessary to densify. The specimen of x = 0.06 sintered at $1050^{\circ}C$ exhibited good microwave dielectric properties; the dielectric constant and the quality factor ($Q{\times}f_0$) were 6.4 and 11,213 GHz, respectively.

DC 마그네트론 스퍼터법에 의한 ZnO:Al 투명전도막 특성 (Some properties of ZnO:Al Transparent Conducting Films by DC Magnetron Sputtering Method)

  • 박강일;김병섭;김현수;임동건;박기엽;이세종;곽동주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.143-146
    • /
    • 2003
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and discharge power on the electrical, optical and morphological properties were investigated experimentally. The consideration on the effect of doping amounts of Al on the electrical and optical properties of ZnO thin film were also carried out. ZnO:Al films with the optimum growth conditions showed resistivity of $9.42{\times}10^{-4}\;{\Omeg}-cm$ and transmittance of 90.88% for 840nm in film thickness in the wavelength range of the visible spectrum.

  • PDF

플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향 (Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers)

  • 김지훈;추영배;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF