• Title/Summary/Keyword: Al-casting alloy

Search Result 370, Processing Time 0.021 seconds

A Study on the Fabrication Process and Melt Infiltration of Salt Core in Squeeze Casting Method (스퀴즈캐스팅용 Salt Core의 제조 및 용탕침투성에 관한 연구)

  • Kim, Ki-Bae;Noh, Sang-Woo;Lee, Ho-In;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.402-410
    • /
    • 1997
  • Developing a salt core for squeeze casting process, two different salt cores(pure salt core and mixed salt core) were fabricated and investigated. Pure salt core was composed of 100% NaCl and mixed salt core was made by mixtures of NaCl with MgO(1%), $Na_2B_4O_7$(2%), and talc(1%) as a binder or a strengthening agent. Salt cores were compacted to various theoretical density, heat treated, and then squeeze-cast with molten Al alloy(AC8A). The compression strength of salt cores were measured and the squeeze-cast products were examined for shape retention, infiltration of molten metal into the cores, and microstructures. The shape of salt core compacted at above 75% of the theoretical density was maintained stably. The higher theoretical density of salt cores gave higher compression strength, and the compression strength of mixed salt core was higher than that of pure salt core. Namely at 90% theoretical density, the compression strength of mixed salt core was $6.3 kg/mm^2$, compared to $4.6 kgmm^2$ for pure salt core. At a squeeze casting pressure of $1000 kg/cm^2$, molten Al alloy was infiltrated into pure salt core of under 85% of the theoretical density. At squeeze casting pressure of $1000 kg/cm^2$, only mixed salt core above 90% of the theoretical density were valid, but the shape of the core was altered in the case of pure salt core at 90% of theoretical density. A key factor for developing a salt core for squeeze casting process was estimated as the ultimate compressive strength of salt core.

  • PDF

Microstructure and Mechanical Properties of Twin-Roll Strip-Cast Al-5.5Mg-0.02Ti Alloy Sheet (쌍롤 박판주조법으로 제조된 Al-5.5Mg-0.02Ti합금의 미세조직 및 기계적 특성)

  • Cheon, Boo-Hyeon;Han, Jun-Hyun;Kim, Hyoung-Wook;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.387-393
    • /
    • 2010
  • High-strength aluminum alloy sheets with high magnesium contents were fabricated by a strip caster equipped with an asymmetric nozzle, which has been proven to be effective for reducing surface defects and internal segregation. 4 mm thick as-cast sheets consisting of fine dendrites and minor $Al_{8}Mg_{5}$ segregation were hot-rolled successfully to 1 mm sheets and subsequently annealed at various temperatures. The sheet revealed the tensile strength and elongation of 306 MPa and 34%, respectively, when it was rolled at 250${^{\circ}C}$ and subsequently annealed at 475${^{\circ}C}$, which exhibits the feasibility of the practical application for autobodies. The observed mechanical properties were explained on the basis of the microstructural characteristics of the alloy sheets.

Microstructure and Mechanical Properties at Room and Elevated Temperatures in AM50-0.3 wt%CaO Alloy (AM50-0.3 wt%CaO 합금의 미세조직과 상·고온 기계적 특성)

  • Cho, Eun-Ho;Jun, Joong-Hwan;Kim, Young-Jik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.499-503
    • /
    • 2012
  • The present study is intended to comparatively investigate the changes in microstructure and tensile properties at room and elevated temperatures in commercial AM50(Mg-5%Al-0.3%Mn) and 0.3 wt%CaO added ECO-AM50 alloys produced by permanent mould casting. The typical microstructure of AM50 alloy was distinctively characterized using two intermetallic compounds, ${\beta}(Mg_{17}Al_{12})$ and $Al_8Mn_5$, along with ${\alpha}$-(Mg) matrix in an as-cast state. The addition of a small amount of CaO played a role in reducing dendrite cell size and quantity of the ${\beta}$ phase in the AM50 alloy. It is interesting to note that the added CaO introduced a small amount of $Al_2Ca$ adjacent to the ${\beta}$ compounds, and that inhomogeneous enrichment of elemental Ca was observed within the ${\beta}$ phase. The ECO-AM50 alloy showed higher hardness and better YS and UTS at room temperature than did the AM50 alloy, which characteristics can be mainly ascribed to the finer-grained microstructure that originated from the CaO addition. At $175^{\circ}C$, higher levels of YS and UTS and higher elongation were obtained for the ECO-AM50 alloy, demonstrating that even 0.3 wt%CaO addition can be beneficial in promoting the heat resistance of the AM50 alloy. The combinational contributions of enhanced thermal stability of the Ca-containing ${\beta}$ phase and the introduction of a stable $Al_2Ca$ phase with high melting point are thought to be responsible for the improvement of the high temperature tensile properties in the ECO-AM50 alloy.

Distribution Behavior of Solute Element in Al-Mg-Zn Alloy Continuous Cast Billet During Homogenization Treatment (Al-Mg-Zn계 알루미늄 합금 연주 빌렛 균질화처리과정 중 용질원소 거동변화)

  • Myoung-Gyun Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.286-293
    • /
    • 2023
  • In this study, we investigated the microstructural evolution of Al-Mg-Zn aluminum alloy billet during homogenization treatment using OM, SEM, EDS and DSC. There were numerous phases found, such as; AlMgZn, AlMgFe, and AlMgZnSi phases, in the grain of the cast billet. After 6 hours homogenization treatment, Zn was mostly dissolved, whereas, Mg and Si were only partly dissolved. Accordingly, only AlMgFe and AlMgSi remained. After 18 hours, all of the leftover Mg and Si were dissolved, leaving only AlMgFe, which was also found after 24 hours. The results of the alloy design program, JMatPro showed that Mg dissloved more rapidly than Zn. According to the homogenization kinetic equation, Mg and Zn are completely dissolved within 1.9 and 3.5 hours, respectively.

Influence of Cu and Zn Contents on the Properties of Al-Fe-Cu-Mg Based Casting Alloys (Cu 및 Mg 첨가량에 따른 Al-Fe-Cu-Mg계 주조합금의 특성변화)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Shin, Je-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.130-135
    • /
    • 2014
  • Efforts have been made to develop new silicon-free aluminum casting alloys that possess high electrical and thermal conductivity. In this research Al-Fe-Cu-Mg alloys with various Cu and Mg contents were investigated for their various properties. As the Cu or Mg content was increased, the electrical conductivity gradually decreased, while the tensile strength of the Al-Fe-Cu-Mg alloy tended to be improved. It was found that fluidity was generally inversely proportional to the Cu content, but the alloys containing 1%Mg showed considerably low fluidity, regardless of the Cu content.

A Study on Fabrication of Intermetallic Compounds/Al Matrix Composites by Squeeze Casting (용탕단조법에 의한 금속간화합물/Al기지 복합재료 개발을 위한 기초연구)

  • Choi, Dap-Chun;Lee, Kyung-Ku;Lee, Yeon-O
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.419-428
    • /
    • 1994
  • The microvickers hardness and microstructure of Fe/Al composite fabricated by squeeze casting method were investigated. Pure Al and A356 Alloy were chosen for the matrix composition and Fe preform was fabricated with sintered Fe powder at $1000^{\circ}C$ for 30min. under hydrogen atmosphere. Experimental variables were included preheating temperature, melt temperature and applied pressure. Analysing the experimental result concerning microstructure of fabricated composites, Fe/A356 composite showed improved microstructure at $600^{\circ}C$ melt temperature and $350^{\circ}C$ preform preheating temperature in Fe distribution and Infiltrated distance. The results of EDX and XRD showed that the interfacial zones of Fe/Al composite were composed of non-equilibrium intermetallic layers[$(Al_5Fe_2)_x$, $Al_{13}Fe_4m\;Fe_3Al$, FeAl]. The microvickers hardness of Fe/Al composite showed higher value than Fe/A356 composite in interface.

  • PDF

Fabrication and Interface Properties of TiNi/6061Al Composite (TiNi 형상기억합금을 이용한 복합재료의 제조 및 계면 특성)

  • Kim, Sun-Guk;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 1999
  • TiNi shape memory alloy was shape memory heat-treated and investigated its mechanical properties with the variation of prestrain. Also 6061 Al matrix composites with TiNi shape memory alloy fiber as reinforcement have been fabricated by Permanent Mold Casting to investigate the microstructures and interface properties. Yield stress of TiNi wire was the most high in the case of before heat-treatment and then decreased as increasing heat-treatment time. In each heat-treatment condition, the yield stress of TiNi wire was not changed with increasing the amount of prestrain. The interface bonding of TiNi/6061Al composite was fine. There was a 2$\mu\textrm{m}$ thickness of diffusion reaction layer at the interface. We could find out that this diffusion reaction layer was made by the mutual diffusion. The diffusion rate from Al base to TiNi wire was faster than that of reverse diffusion and the amount of the diffusion was also a little more than that of reverse.

  • PDF

Measurement of Lattice Parameter of Primary Si crystal in Rheocast Hypereutectic Al-Si Alloy by Convergent Beam Electron Diffraction Technique (수렴성빔 전자회절법을 이용한 리오캐스팅시킨 과공정 Al-Si합금에서 실리콘초정의 격자상수 측정)

  • Lee, Jung-Ill;Kim, Gyeung-Ho;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.99-107
    • /
    • 1995
  • The morphological changes of primary solid particles as a function of process time on hypereutectic Al-15.5wt%Si alloy during semi-solid state processing with a shear rate of $200s^{-1}$ are studied. In this alloy, it was observed that primary Si crystals are fragmented at the early stage of stirring and morphologies of primary Si crystals change from faceted to spherical during isothermal shearing for 60 minutes. To understand the role of Al dissolved in the primary Si crystal by shear stress at high temperature, lattice parameters of the primary Si crystals are determined as a variation of high order Laue zone(HOLZ) line positions measured from convergent beam electron diffraction(CBED) pattern. The lattice parameter of the primary Si crystal in the rheocast Al-15.5wt%Si alloy shows tensile strain of about 5 times greater than that of the gravity casting. Increase of the lattice parameter by rheocasting is due to the increased amount of Al dissolved in the primary Si crystal accelerated by shear stress at high temperature. The amounts of solute Al in the primary Si crystal are measured quantitatively by EPMA method to confirm the CBED analysis.

  • PDF

Effect of Fe, Mn Contents of Al-9wt%Si-0.3wt%Mg Alloys on the Thickness of Die Soldering Reaction Layer for SKD61 Die Steel (SKD61 금형강의 소착 반응층 두께에 미치는 Al-9wt%Si-0.3wt%Mg 합금의 Fe, Mn 영향)

  • Kim, Heon-Joo;Cho, Chi-Man;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.169-175
    • /
    • 2009
  • Effect of iron and manganese contents on die soldering reaction has been studied in Al-9wt.%Si-0.3wt.%Mg alloy. Ternary ${\alpha}_{hcp}-Al_8Fe_2Si$ and ${\alpha}_{bcc}-Al_8Fe_2Si$ intermetallic compounds formed by interaction diffusion between Al-Si-Mg system alloy melt and SKD61 die steel surface. Thickness of soldering reaction layer in die steel surface decreased as Fe and Mn contents of the melts increased : When Fe content of Al-9wt.%Si-0.3wt.%Mg melts at constant 0.5wt%Mn content was 0.15wt.%, 0.45wt.% and 0.6wt.%, thickness of soldered layer of each alloy was $64.5{\mu}m,\;57.3{\mu}m$ and $46.9{\mu}m$ respectively. For Mn content of the alloy melts at constant 0.45wt.%Fe content was 0.30wt.%, 0.50wt.% and 0.70wt.%, thickness of soldered layer of each alloy was $66.1{\mu}m,\;57.3{\mu}m$ and $48.3{\mu}m$ respectively.

Real Time Imaging of Solidification Behavior by Synchrotron X-ray Radiography (싱크로트론 X-선 투과영상법을 활용한 응고거동 실시간 관찰)

  • Lee, Sang-Mok;Yasuda, Hideyuki
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.5-13
    • /
    • 2010
  • This article aims to introduce the synchrotron radiation for its utilization in the casting and solidification fields as an unique tool for observation of real time phenomena of molten metal during solidification. General features of the synchrotron radiation were briefly introduced for readers in the casting and solidification fields, with no background regarding to synchrotron radiation. And basic principles of imaging technologies using synchrotron light for in-situ observation of molten metal were explained together with exemplary research works, which were reported on the casting and solidification fields in recent years. As a practical guide, real time observation of Al-Si casting alloy was introduced with experimental facilities, image acquisition, and processing together with representative results.