• 제목/요약/키워드: Al-casting alloy

검색결과 370건 처리시간 0.025초

합금의 방향성 주조에 대한 미시적-거시적 해석 (Micro-macroscopic analysis on the directional casting of a metal alloy)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1303-1313
    • /
    • 1997
  • A micro-macroscopic analysis on the conduction-controlled directional casting of Al-Cu alloys is performed, in which emphases are placed on the microstructural features. In order to facilitate the solution procedure, an iterative micro-macroscopic coupling algorithm is developed. The predicted results show that the effect of finite back diffusion on the transient solidification process in comparison with the lever rule depends essentially on the initial concentration of an alloy. In the final casting, the eutectic fraction is distributed in an increasing-decreasing-increasing pattern, each mode of which is named the chill, interior and end zones. This nonuniformity per se suffices to justify the necessity of this work because it originates from the combined effects of finite back diffusion and cooling path-dependent nature of the eutectic formation. As the cooling rate is enhanced, not only the influence depths of boundaries narrow, but also the eutectic fractions in the chill and interior zones increase. In addition, it is revealed for the first time that the micro segregation band is formed in response to a sudden change in cooling rate during the directional casting. An increasing change creates an overshooting band in the eutectic fraction distribution, and vice versa.

금형 예열온도에 따른 Al-Cu-Si 3원계 공정합금의 미세조직 변화 (Changes on the Microstructure of an Al-Cu-Si Ternary Eutectic Alloy with Different Mold Preheating Temperatures)

  • 오승환;이영철
    • 한국주조공학회지
    • /
    • 제42권5호
    • /
    • pp.273-281
    • /
    • 2022
  • Al-Cu-Si 3원계 공정합금의 응고거동과 미세조직 변화를 이해하기 위해서, 금형 예열온도를 달리하여 Al-Cu-Si 3원계 공정합금의 미세조직 변화를 관찰하였다. 금형 예열온도가 500℃일 때, 초정 Si과 덴드라이트 형상의 Al2Cu상이 관찰되며, 이후 (α-Al+Al2Cu)의 2원계 공정상이 관찰된다. 금형 예열온도가 300℃일 때 미제조직은 금형 예열온도가 500℃일 때와 유사하나 (α-Al+Al2Cu+Si)의 3원계 공정상이 관찰되는 영역과 관찰되지 않는 영역이 나타난다. 금형 예열온도가 150℃인 경우에는 미세조직이 (α-Al+Al2Cu)의 2원계 공정상과 (α-Al+Al2Cu+Si)의 3원계 공정상이 관찰되는 Bimodal 구조를 나타낸다. 금형 예열온도를 달리 하였을 때 가장 큰 변화를 나타내는 상은 Si상이며, 임계냉각속도를 지나면 (α-Al+Al2Cu+Si)의 3원계 공정상이 형성되는 순간에 빠른 냉각에 의한 Si의 성장이 억제되면 Cooperative 성장을 하기 때문에 Al, Cu의 성장도 함께 억제된다. 서로 다른 합금설계 전산모사 프로그램을 통해 Al-27wt%Cu-5wt%Si의 3원계 공정 합금을 분석한 결과, 합금설계 전산모사 프로그램에 따라 결과의 차이가 발생하며, 전산모사의 신뢰성을 높이기 위해서는 실제 주조를 통한 미세조직 분석이 수반되어야 한다.

가압연속주조법에 의한 SiCp/Al 합금기 복합재료의 조직 및 특성 (Microstructure and Characteristics of SiCp/Al-4.5wt%Cu-1wt%Mg Composites by Pressurized Continuous Compo-Casting)

  • 이학주;홍준표
    • 한국주조공학회지
    • /
    • 제11권1호
    • /
    • pp.71-78
    • /
    • 1991
  • Microstructure and characteristics of the SiCp/Al-4.5wt%Cu-1wt%Mg composites fabricated by the combination of the compocasting and the pressurized continuous casting process, which is one of the processes to decrease the limitations of the size, and shops of the products, are investigated. The main results are as follows: 1) the SiCp/Al alloy matrix composites can be made continuously 2) as the amount of SiCp addition increases; (1) the degree of directional solidification of matrix structure decreases, and that of SiCp dispersion improves, (2) wear resistance improves, and especially these composites show the excellent wear resistance under the high sliding speed and high final load condition, (3) wear mechanism of these composites is changed from adhesive wear into abrasive wear, and the tendency of that becomes outstanding with increasing sliding speed.

  • PDF

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

$Al_{71.6}Ge_{28.4}$ 공정합금의 미세구조 및 기계적 성질의 평가 (Microstructural evolution and mechanical properties of $Al_{71.6}Ge_{28.4}$ eutectic alloy)

  • 박진만;육완;김도향
    • 한국주조공학회지
    • /
    • 제27권4호
    • /
    • pp.167-172
    • /
    • 2007
  • In the present study, the microstructural evolution and mechanical properties of $Al_{71.6}Ge_{28.4}$ eutectic alloy have been investigated. Stable (fcc ${\alpha}$-Al and diamond cubic ${\beta}$-Ge) and various metastable crystalline (monoclinic, rhombohedral) phases were produced by competitive phase selection during non-equilibrium processing methods i.e. melt spinning and injection casting. The as-injection casted samples containing metastable-equilibrium eutectic (${\alpha}$-Al + monoclinic) structure showed much higher strength than samples with equilibrium eutectic (${\alpha}-Al+{\beta}-Ge$) structure but plasticity disappointingly diminished. In order to endow the enhanced ductility without significant strength drop, the alloys was heat-treated at transition temperature from metastable phase to stable phase. The annealed specimen displayed the phase transformed microstructural evolution and enhanced macroscopic plasticity.

T5 열처리한 Al합금 금형주조품에서 경도의 역분포현상 ("An Inverse Distribution of Hardness in T5-Heat Treated Al-Alloy Permanent Mold Castings")

  • 이진형
    • 한국주조공학회지
    • /
    • 제8권3호
    • /
    • pp.282-286
    • /
    • 1988
  • Aluminum alloy permanent mold castings often exhibit in as-cast or T5-heat treated state an inverse distribution of hardness, i.e. thinner sections have lower hardness than thicker sections. This phenomina is explained by measuring the cooling curves in a test casting in an Aluminum piston alloy (AC8A or A332). Thinner sections solidify faster but later cooles down more slowly than thicker sections in temperature range where coarse precipitation of supersaturated elements can take place. The precipitation rate of $Mg_2Si$ phase in A332 alloy seems to be maximum at around $490^{\circ}C$.

  • PDF

전자교반을 응용한 Al-7%Si 알루미늄 소재의 레올로지 성형공정에 관한 연구 (A Study on Rheology Forming Process of Al-7%Si Alloy with Electromagnetic Application)

  • 고재홍;서판기;강충길
    • 소성∙가공
    • /
    • 제15권3호
    • /
    • pp.195-205
    • /
    • 2006
  • This paper focuses on a rheo-forming of am part fabricated by electromagnetic stirring system (EMS). This forming process take place under high pressure of high pressure die casting and thin walled casting is possible. Furthermore, the productivity is better than low pressure die casting because of shorter cycle time. The advantages of rheo-forming are performed in the semi solid state with laminar flow and the gas content is low, which makes welding possible. Therefore this research applies for arm part with EMS and has investigated the mechanical properties after T6 and T5 heat-treatment.

Mg-5wt%Al-0.6wt%Zr합금의 용탕단조시 주조결함의 형성 및 방지 (Formation and Prevention of Macrodefects in the Squeeze Casting of a Mg-5wt%Al-0.6wt%Zr Alloy)

  • 황영하;허승호;홍준표
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.275-282
    • /
    • 1998
  • The squeeze casting of a Mg-5wt%Al-0.6wt%Zr alloy was carried out to investigate the conditions for the formation and the prevention of macrodefects, such as macrosegregation and shrinkage defects. The effects of the process parameters, the applied pressure, the die temperature, and the pouring temperature on the formation of macrodefcts were investigated in correlation with the evolution of macrostructure. Three types of macrodefects were found; macrosegregation only, shrinkage defects only, both macrosegregation and shrinkage defects. It was found that the pouring temperature, the die temperature, and the applied pressure are closely related to the formation of macrodefects. Sound castings without macrosegregation and shrinkage defects can be obtained under the conditions of 80 MPa$730^{\circ}C$$760^{\circ}C$, and $180^{\circ}C$<$T_D$<$250^{\circ}C$.

  • PDF

중력주조 및 직접가압주조 7XXX계 Al합금의 미세조직에 관한 연구 (The Study on the Microstructures in Direct Squeeze cast and Gravity Cast of 7XXX Al Wrought Alloy)

  • 김석원;김대영;우기도;김동건
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.47-53
    • /
    • 1999
  • Squeeze casting process has been used in the field of a commercial manufacturing method, in which metal is enforcedly solidified under pressure enough to prevent the cast defects such as either gas porosity or shrinkage defect. In this paper, to clarify the relationship between applied pressures and macro ${\cdot}$ microstructural behaviors in gravity and direct squeeze casts, specimens were cast by various squeezing pressures during solidification of 7000 series Al wrought alloy in the metal die designed specially. The applied pressures used in this study were 0, 25, 50, and 75 MPa. The microstructural morphologies of squeeze cast were more fine and dense with increasing the applied pressures, because of the greater solidification rate of billet resulting from the applied pressure. A normal segregation phenomenon of an increasing in amount of eutectics towards the center of the billet was observed for squeeze casts, whereas gravity cast showed an inverse segregation phenomenon of an increasing in amount of eutectics towards the edge in the billet. This change in segregation pattern which is normal or inverse is due to a higher radial temperature gradient and reduced time in the semi solid state for squeeze casting.

  • PDF

입자미세화가 Al-4.8%Cu-0.6%Mn 합금의 유동도에 미치는 영향 (The Effect of Grain Refinement on Fluidity of Al-4.8%CU-0.6%Mn Alloy)

  • 권영동;이진형;김경현
    • 한국주조공학회지
    • /
    • 제22권3호
    • /
    • pp.109-113
    • /
    • 2002
  • A good fluidity of high strength Al-alloys is required to cast thin wall castings needed to reduce the weight of cast parts. The fluidity, measured as the length to which the metal flows in a standard channel, is affected by many factors, such as the pouring temperature, solidification type of the alloy, the channel thickness, melt head, mold materials and temperature, coating etc. Therefore the experimentally measured fluidity scatters very much and makes it difficult to estimate the fluidity of a melt with a few measurements. The effect of Ti content and grain refinement on the fluidity of high strength aluminum alloy was investigated with a test casting with 8 thin flow channels to reduce the scattering of the fluidity results. The fluidity of Al-4.8%Cu-0.6%Mn Al-6.2%Zn-1.6%Mg-1.0%Cu and well-known commercial aluminum alloy, A356 was tested. Initial content of Ti was varied from 0 to 0.2wt% and Al-5Ti-B master alloy was added for grain refinement. The flow length varied linearly with superheat. By adding Ti and Al-5Ti-B, the fluidity increased. The grain size decreased by adding grain refiner at the same time. The fluidity depended on the degree of grain refinement. The fluidity of the alloy solidifying in mushy type is improved by grain refinement, because grain refinement increases the solid fraction at the time of flow stoppage.