• Title/Summary/Keyword: Al-SiC

Search Result 2,074, Processing Time 0.027 seconds

Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides II. Synthesis of Coated Type $Al_2O_3-SiC$ Composite Powders (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 II. 피복형 $Al_2O_3-SiC$ 복합분말의 합성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.243-249
    • /
    • 1993
  • Coated type Al2O3-SiC composite powders were synthesized by surface modification method. Transformation temperature to $\alpha$-Al2O3 of Al2O3 monolith was 115$0^{\circ}C$ whereas increased to 1200, 1250, 130$0^{\circ}C$ with increment of SiC content to 5, 15, 25wt%. Transformation temperature to $\alpha$-Al2O3 was lowered by $\alpha$-Al2O3 seeding. FTIR data analysis and electron micrographs showed that Al2O3 particles were effectively coated on SiC particles.

  • PDF

Sintering behavior and mechanical properties of the $Al_2O_3-SiC$ nano-com-posite using a spark plasma sintering technique ($Al_2O_3-SiC$ 나노복합체의 방전 플라즈마 소결 특성 및 기계적 물성)

  • 채재홍;김경훈;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.309-314
    • /
    • 2003
  • A spark plasma sintering technique has been used for the fabrication of $Al_2O_3$-SiC nanocomposites at the low temperature of $1100^{\circ}C$$1500^{\circ}C$. The sintered $Al_2O_3$-SiC composites shows very homogeneous microstructure without any particular abnormal grain growth, indicating that the addition of nano-sized SiC particles is very effective to control grain growth and to induce the residual stress in the $Al_2O_3$ matrix, resulting in the intragranular fracture. These SiC particles are present in the grain boundaries and also intragrain, depending on the sintering condition, and improve remarkably the mechanical properties of $Al_2O_3$-SiC composite through the mechanisms of strengthening and toughening induced by crack diffraction and crack bridging.

High Temperature Deformation Behavior of $SiC_p/Al-Si$ Composites ($SiC_p/Al-Si$ 복합재료의 고온변형 특성)

  • 전정식;고병철;김명호;유연철
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.427-439
    • /
    • 1994
  • The high temperature deformation behavior of $SiC_p/Al-Si$ composites and Al-Si matrix was studied by hot torsion test in a range of temperature from $270^{\circ}C$ to $520^{\circ}C$ and at strain rate range of $1.2{\times}10_{-3}~2.16{\times}10_{-1}/sec$. The hot restoration mechanisms for both matrix and composites were found to be dynamic recrystallization(DRX) from the investigation of flow curves and microstructural evolutions. The Si precipitates and SiC particles promoted DRX, and the peak strain$({\varepsilon}_p)$ of the composites was smaller than that of the matrix. Flow stresses of $SiC_p/Al-Si$ composites were found to be generally higher than the matrix, but the difference was quite small at higher temperature due to the decrease of capability of load transfer by SiC particles. With increasing temperature, failure strain of matrix and composites are inclined to increase, the increasing value of failure strain for the $SiC_p/Al-Si$ composites was small compared to that of matrix. The stress dependence of both materials on strain rate() and temperature(T) was examined by hyperbolic sine law, $\.{\varepsilon}=A_1[sinh({\alpha}{\cdot}{\sigma})]_n$exp(-Q/RT)

  • PDF

Optimal Parameter Design for Al/SiC Composites using Design of Experiments (실험계획법에 의한 Al/SiC 복합재료의 최적공정 설계)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-76
    • /
    • 2011
  • In this work, the parameter optimization for thermal-sprayed Al/SiC composites have been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA). Al/SiC composites were fabricated by flame spray process on steel substrate. The hardness of composites were measured using micro-vickers hardness tester, and these results were analyzed by ANOVA. The ANOVA results showed that the oxygen gas flow, powder feed rate and spray distance affect on the hardness of the Al/SiC composites. From the ANOVA results, the optimal combination of the flame spray parameters could be extracted. It was considered that experimental design using orthogonal array and ANOVA was efficient to determine optimal parameter of thermal-sprayed Al/SiC composites.

Effect of Process Parameters on Plasma Nitriding Properties of $FeAl/SiC_p$ Composites ($FeAl/SiC_p$ 복합재료의 공정변수에 따른 플라즈마 질화 특성)

  • 박지환;김수방;박윤우
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 1999
  • This study was to analyse the relationship between process parameters of the sintered composite and plasma nitriding properties with pulsed DC plasma. Fe-40at%$SiC_p$ composites of full density were fabricated by hot pressing at 1100~$1150^{\circ}C$. Sintered Fe-40at%Al and Fe-40at%$Al/SiC_p$ alloys were nitrided under pulsed DC plasma. Excellent surface hardness in the FeAl alloys could be obtained by plasma nitriding. ($H_v$ :100gf, diffusion layer : 1100~$1450kg/mm^2$, matrix : 330~$360kg/mm^2$) The wear resistance of $FeAl/SiC_p$ composites were improved about by 4~6times than FeAl and nitrided $FeAl/SiC_p$ were improved about 2 times than $FeAl/SiC_p$ matrix.

  • PDF

Effect of First-Stage Growth Manipulation and Polarity of SiC Substrates on AlN Epilayers Grown Using Plasma-Assisted Molecular Beam Epitaxy

  • Le, Duy Duc;Kim, Dong Yeob;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.266-270
    • /
    • 2014
  • Aluminum nitride(AlN) films were grown on the C-face and on the Si-face of (0001) silicon carbide(SiC) substrates using plasma-assisted molecular-beam epitaxy(PA-MBE). This study was focused on first-stage growth manipulation prior to the start of AlN growth. Al pre-exposure, N-plasma pre-exposure, and simultaneous exposure(Al and N-plasma) procedures were used in the investigation. In addition, substrate polarity and, first-stage growth manipulation strongly affected the growth and properties of the AlN films. Al pre-exposure on the C-face and on the Si-face of SiC substrates prior to initiation of the AlN growth resulted in the formation of hexagonal hillocks on the surface. However, crack formation was observed on the C-face of SiC substrates without Al pre-exposure. X-ray rocking-curve measurements revealed that the AlN epilayers grown on the Si-face of the SiC showed relatively lower tilt and twist mosaic than did the epilayers grown on the C-face of the SiC. The results from the investigations reported in this paper indicate that the growth conditions on the Si-face of the SiC without Al pre-exposure was highly preferred to obtain the overall high-quality AlN epilayers formed using PA-MBE.

Study on Grain Refinement of Al-7Si Based Alloys with TiC (Al-7Si 합급의 결정립 미세화에 미치는 TiC 첨가의 영향)

  • Han, Yun-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.23 no.2
    • /
    • pp.63-68
    • /
    • 2003
  • Al-Ti-C grain refiner form a relatively new alternative to the existing class of Al-Ti-B type grain refiners for achieving fine equiaxed structures in aluminum alloys during casting and solidification. The present study was carried out to investigate the influence of Al-Ti-C master alloys on the grain structure of Al-7Si alloys. The present study also investigates the relationship between grain refining efficiency and concentrations of Fe and Si in hypo-eutectic Al-Si alloys using Al-3Ti-0.13C master alloys. It is found that several parameters affect significantly the grain refining performance in silumin alloys. The present study reports the influence of various parameters such as alloy content, master alloy addition level, melt holding time and superheat on the grain refining efficiency in Al-7Si alloys.

Characteristics of polycrystalline AlN thin films deposited on 3C-SiC buffer layers for M/NEMS applications (3C-SiC 버퍼층위에 증착된 M/NEMS용 다결정 AlN 박막의 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.462-466
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Si substrates by using polycrystalline (poly) 3C-SiC buffer layers, in which the AlN film was grown by pulsed reactive magnetron sputtering. Characteristics of grown AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. The columnar structure of AlN thin films was observed by FE-SEM. X-ray diffraction pattern proved that the grown AlN film on 3C-SiC layers had highly (002) orientation with low value of FWHM (${\Theta}=1.3^{\circ}$) in the rocking curve around (002) reflections. These results were shown that almost free residual stress existed in the grown AlN film on 3C-SiC buffer layers from the infrared absorbance spectrum. Therefore, the presented results showed that AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

Toughening of SiC Whisker Reinforced Al2O3 Composite (SiC 휘스커 강화 Al2O3 복합재료의 고인화)

  • Kim Yon Jig;Song Jun Hee
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.