• Title/Summary/Keyword: Al-Si 코팅된 보론강

Search Result 2, Processing Time 0.011 seconds

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (I) - Laser Weldability of Al-Si Coated Boron Steel Used for Hot Stamping Process - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (I) - 핫스탬핑 공정에 사용되는 Al-Si 코팅된 보론강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Lee, Su Jin;Suh, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1367-1372
    • /
    • 2014
  • As the awareness of the environmental crisis has recently increased around the world, numerous studies in the transport industry have been conducted to solve this problem through lightweight car bodies. The hot-stamping process has been presented as solution to achieve a light weight. Hot-stamping is a method that is used to obtain ultra-high strength steel (1,500 MPa or greater) by simultaneously forming and cooling boron steel in a press die after heating it to a temperature of $900^{\circ}C$ or above. This study involved a, fundamental examination of laser parameters to investigate the laser weldability of boron steel. As a result, the following optimum parameters for the shielding gas were found: Q = 20 l/min, ${\alpha}=40^{\circ}$, d = 20mm, and l = 0 mm. The hardness of butt weldment increasesed sharply as a result of martensite formation at the fusion zone.

A Study on Spot-Welding Characteristics and Material Analysis of Boron Steel for Hot-Stamping under Different Heat-Treatment Conditions (핫스탬핑용 보론 강판의 열처리 조건에 따른 재질분석 및 점용접 특성 연구)

  • Je, Hwan-Il;Son, Chang-Suk;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.383-391
    • /
    • 2011
  • The hot-stamping technique is used to manufacture high-strength parts by press forming by heating at a temperature above the Austenite transformation temperature and then rapid cooling. Boron steel, which contains a very small amount of boron, is one of the materials used for hot stamping. The purpose of this study is to show the microstructures and to investigate the mechanical properties under different heat-treatment conditions. The heat treatment of water quenching was conducted at the various temperatures and different elapsed times. These can be practical data useful when boron steels are used for hot stamping. Furthermore, the microstructures and mechanical properties of the spot-welded specimen with coatings and counterpart materials (SPRC 340, SPRC 590) is investigated in order to determine the welding characteristics of boron steel at different welding condition.