• Title/Summary/Keyword: Al-Si

Search Result 4,536, Processing Time 0.027 seconds

A Study on the Separation of Neodymium from the Simulated Solution of $U_3Si/Al$ Spent Nuclear Fuel (모의 사용후분산핵연료($U_3Si/Al$) 용해용액으로부터 네오디뮴 분리에 관한 연구)

  • Choi, Kwang Soon;Kim, Jung Suk;Han, Sun Ho;Park, Soon Dal;Park, Yeong Jae;Joe, Kih Soo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.584-591
    • /
    • 2000
  • The separation of Nd from the simulated $U_3Si/Al$ spent fuel solution with sequential two-step anion exchange separation has been studied. To prepare the simulated $U_3Si/Al$ spent nuclear fuel, unirradiated $U_3Si/Al$ whose composition consists of small $U_3Si$ particle dispersed in an Al matrix with Al cladding was dissolved with a mixture of 4 M HCl and 10 M $HNO_3$ and 8 or 15 fission product elements were added to the dissolved solution. The trace amount of silica in the solutions was removed by evaporating to dryness with HF and the U was adsorbed on the first anion exchange resin. Neodymium can be purely isolated from the fission product elements with a methanol-nitric acid eluent using the second anion exchange resin. A large excess of Al didn't influence on the elution velocity of Nd, but reduced the eluted contents of Nd, Al, Eu, Gd, Sm and Sr, A large amount of Al was removed first from the column with 3 mL of loading solution (0.8 M $HNO_3$/99.8% MeOH) before Nd elution by the eluent [0.04 M $HNO_3$-99.8% MeOH(1:9)]. The recovery of Nd was more than 94%, regardless of Al contents. Taking the 9 to 13 mL fraction of eluate was effective to purely isolate Nd.

  • PDF

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

Immobilization of sodium-salt wastes containing simulated 137Cs by volcanic ash-based ceramics with different Si/Al molar ratios

  • Sun, Xiao-Wen;Liu, Li-Ke;Chen, Song
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3952-3965
    • /
    • 2021
  • In this study, volcanic ash was used as raw material to prepare waste forms with different silicon/aluminum (Si/Al) molar ratios to immobilize sodium-salt waste (SSW) containing simulated 137Cs. Effects of Si/Al molar ratios (3:1 and 2:1) and sodium salts on sintering behavior of waste forms and immobilization mechanism of Cs+ were investigated. Results indicated that the main mineral phase of sintered waste-form matrixes was albite, and the formation of major phases was found to depend on Si/Al molar ratios. Si/Al molar ratio of 2 was favorable for the formation of pollucite, and the formation and crystallization of mineral phases were also decided based on physicochemical characteristics of sodium salts. Furthermore, product consistency test results indicated that the immobilization of Cs+ was related to Si/Al molar ratio, types of sodium salts, and glassy phase. Waste forms with Si/Al molar ratio of 2 exhibited better ability to immobilize Cs+, whereas the influence of sodium salts and glassy phases on the immobilization of SSW showed more complicated relationship. In waste forms with Si/Al molar ratio of 2, Cs+ leaching concentrations of samples containing Na2B4O7·10H2O and NaOH were low. Na2B4O7·10H2O easily transformed into liquid phase during sintering to consequently achieve low temperature liquid-phase sintering, which is beneficial to avoid the volatilization of Cs+ at high temperature. Results clearly reveal that waste forms with Si/Al molar ratio of 2 and containing Na2B4O7·10H2O show excellent immobilization of Cs+.

Preparation of ZrC/SiC by Carbothermal Reduction of Zircon (지르콘의 탄소열환원에 의한 ZrC/SiC의 합성)

  • Park, Hong-Chae;Lee, Yoon-Bok;Lee, Cheol-Gyu;Oh, Ki-Dong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1044-1055
    • /
    • 1994
  • The preparation of ZrC/SiC mixed powders from $ZrSiO_4/C$ and $ZrSiO_4/Al/C$ systems was attempted in the temperature range below $1600^{\circ}C$ under Ar or $Ar/H_2$ gas flow(100-500ml/min). The formation mechanism and kinetics of ZrC/SiC were suggested and the resultant powders were characterized. In $ZrSiO_4/C$ system, ZrC and SiC were formed by competitive reaction of $ZrO_2(s)$ and SiO(g) with carbon at temperature higher than $1400^{\circ}C$. The apparent activation energy for the formation of ZrC was approximately 18.5kcal/mol($1400-1600^{\circ}C$). In $ZrSiO_4/Al/C$ system, ZrC was formed by reaction of ZrO(g) with Al(l, g) and carbon at temperature higher than $1200^{\circ}C$, and SiC was formed by reduction-carbonization of SiO(g) with Al(l, g) and carbon at temperature higher than $1300^{\circ}C$. The products obtained at $1600^{\circ}C$ for 5h consisted of ZrC with lattice constant of $4.679{\AA}$ and crystallite size of $640{\AA}$, and SiC with lattice constant of $4.135{\AA}$ and crystallize size of $500{\AA}$. And also, the mean particle size was about $21.8{\mu}m$.

  • PDF

Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite (용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질)

  • Kim, Min-Soo;Cho, Kyung-Mox;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

Deformation Behavior of Spray-formed Hypereutectic Al-Si Alloys (분무성형을 통해 제조된 과공정 Al-Si 합금의 기계적 특성)

  • Park W. J.;Ha T. K.;Ahn S.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.285-288
    • /
    • 2001
  • Hypereutectic Al-25Si-X alloys, expected to be applied to the cylinder-liner-part of the engine-block of an automobile due to the excellent wear resistance, low density and low thermal expansion coefficient has been fabricated through a spray forming process. The obtained microstructure of the hypereutectic Al-25Si-X alloy appeared to consist of Al matrix and equiaxed Si particles of average diameter of $5-7{\mu}m$. To characterize the deformation behavior of this alloy, a series of load relaxation and compression tests have been conducted at temperatures ranging from RT to $500^{\circ}C$. The strain rate sensitivity parameter (m) of this alloy has been found to be very low (0.1) below foot and reached 0.2 at $500^{\circ}C$. During the deformation above 300'c in compression, strain softening has been observed. The diagram of extrusion pressure vs. ram-speed has been constructed, providing the extrusion condition of Al-25Si-X alloys.

  • PDF

The High Density Sintering of Green-emitting β-SiAlON:Eu Ceramic Plate Phosphor (녹색발광 β-SiAlON:Eu 세라믹 플레이트 형광체의 치밀화 소결)

  • Park, Young-Jo;Lee, Sung-Hoon;Jang, Wook-Kyung;Yoon, Chang-Bun;Yoon, Chul-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.503-508
    • /
    • 2010
  • $Eu^{2+}$-doped $\beta$-SiAlONs ($Si_{6-z}Al_zO_zN_{8-z}:Eu_y$) are recognized as promising phosphor materials to build an white LED for lighting application due to its excellent absorption/emission efficiency in the long wave length region. In this research, the fabrication of $\beta$-SiAlON:Eu plate phosphor by sintering was investigated with fixed Eu content(y) and varied composition of the host lattice(z). The addition of the activator $Eu_2O_3$ lead to enhanced densification by forming the transient liquid phase. The refinement of a composition by the calculated lattice parameter indicated that the measured composition of the fabricated specimens is nearly same to that of designed one. The single phase $\beta$-SiAlON:Eu plate with relative density of 96.4% was achieved by addition of 2 wt% CaO, which implies the possibility of full densification by adjusting the processing variables.

Effects of Al, Mn and Si Contents on Spatter, Fume, Microstructure and Mechanical Property with 490MPa Grade Flux Core Wire (490MPa급 플럭스코어드 와이어의 스패터, 흄, 미세조직 및 기계적 성질에 미치는 Al, Mn, Si의 영향)

  • Kim, Min-Chul;Jung, Won-Jung;Lee, Bong-Keun;Kong, Jong-Pan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.60-65
    • /
    • 2010
  • This paper is concerned with effects of Al, Mn and Si contents on spatter, fume, microstructure and mechanical property with 490MPa Grade Flux Core Wire(FCW). Ten kinds of FCW were fabricated by varying Mn, Si and Al contents and each FCW was weld for check the amount of spatter and fume generations, microstructures and mechanical property. Amount of spatter and fume generations was decreased with the increasing Si contents and decreasing by Al contents in FCW. And, their microstructure of weld metal were changed by Mn, Al and Si contents in FCW. With increasing of Al and Si, acicular ferrite was fine and volume fraction of acicula ferrite was increased. Thereby leading to improvement of Charpy impact property and strength.

A Study on the Microstructure and Hardness of Al-Si-Mg Alloys upon Heat Treatments (Al-Si-Mg계 합금의 열처리에 의한 미세조직과 경도 변화)

  • Lee, Se-Jong;Lee, Sung-Kwan;Baik, Nam-Ik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.108-114
    • /
    • 2000
  • The effects of heat treatments in Al-Si-Mg alloys on the microstructure and hardness have been investigated by the optical microscope, scanning electron microscope(SEM), and Rockwell hardness tester. The materials of various compositions are melted in a vacuum induction furnace under argon atmosphere. Five different Al alloys are prepared from commercial purity aluminium, magnesium and Al-25Si alloy. Two types of aging treatments are performed: i) Isothermal aging of the specimens at $150^{\circ}C$, $170^{\circ}C$ and $190^{\circ}C$. ii) Pre-aging of the specimens at $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, and followed by final-aging at $170^{\circ}C$ and $190^{\circ}C$. After the heat treatments, Rockwell hardness are measured with all the specimens.

  • PDF

A Study on Laser Weldability of Al-Si Coated 22MnB5 Steel for TWB Hot Stamping (Al-Si 도금된 22MnB5강의 핫스탬핑 TWB 적용을 위한 레이저용접성 고찰)

  • Kim, Yong;Park, Ki-Young;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.30-36
    • /
    • 2013
  • Recently the use of ultra high strength steels(UHSS) in structural and safety component is rapidly increasing in the automotive industry. Furthermore, it commonly use in tailor welded blank laser welding process before hot stamping to reduce lightweight vehicle. However TWB process is to be a problem about welded strength after hot stamping because it's welded before heat treatment. Therefore, in this study, laser welds of TWB after heat treatment were analyzed for changes in the characteristics, especially the impact on the oxidation and decarburization in order to prevent pre-coated Al-Si layer welds on the properties for intensive investigation. As a result, the degradation of the TWB weldments changes in the heat treatment conditions alone, without any pre-treatment of the coating layer has confirmed that there is a limitation on the improvement. Furthermore Al-Si elements are overall distributed on the weldment and it specially concentrated along the fusion line. Hardness value of Al-Si segregation area is less than 350Hv and tensile strength showed just 78~83% compared with substrate. Accordingly, we proved that both side Al-Si coating should be removed in order to ensure the strength of the substrate.