• Title/Summary/Keyword: Al-Mn alloy

Search Result 179, Processing Time 0.021 seconds

Measurement of the Corrosion Rate of Aluminum in Alkaline Solution (알칼리 용액에서 알루미늄의 부식속도 측정)

  • Shim Eun-Gi;Hwang Young-Gi;Chun Hai-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.117-122
    • /
    • 1999
  • This study investigated the corrosion rate of aluminum in alkaline solution. It was performed to observe the effects of alloy element, alkalinity (KOH concentration), solution temperature, and inhibitor and its concentration in the solution. Among species of aluminum, AA-1050 showed the lowest corrosion rate due to its high purity $(>199\%)$, whereas alloys containing Mg anuor Mn were highly corroded, relatively. The corrosion rate could be reduced over than $50\%$ by saturating the solution with ZnO, while ZnAc did not work as an inhibitor. The inhibition effect of ZnO increased with increasing the alkalinity and solution temperature. It was found that the corrosion rate linearly increased with the concentration of KOH in first order and exponentially decreased with the inverse of the solution temperature. An analysis of the corroded material covered the surface of aluminum was made by SEM and EDS. According to the analytical results by using XRD, it was confirmed that $Al(OH)_3$ was produced from the corrosion of aluminum in KOH solution.

Electrochemical Study of a Single Particle of Active Material for Secondary Battery using the Microelectrode (마이크로 전극에 의한 2차 전지용 활물질 단일 입자의 전기화학적 평가)

  • Kim Ho-Sung;Lee Choong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Electrochemical properties were studied for a single particle of active material of hydrogen storage alloy $(MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3})$ and nickel hydroxides $(NiOH)_2$ for the secondary Nickel Metal Hydride (Ni-MH) batteries using the microelectrode, which was manipulated to make electrical contact with an active material particle for cyclic voltammograms (CV) and potential-step experiments. As a result of CV test, it was found that three kinds of hydrogen oxidation peaks at -0.9, -0.75 and -0.65 V and hydrogen evolution peak at -0.98 V for hydrogen storage alloy were separately observed and two kinds of peaks of proton oxidation/reduction at 0.45 and 0.32 V and oxygen evolution reaction (OER) at 0.6 V for nickel hydroxides were also more clearly observed. Furthermore hydrogen diffusion coefficient within a single particle was also found to vary the order between $10^{-9}\;and\;10^{-10}cm^2/s$ over the course of hydrogenation and dehydrogenation process for potential-step experiments.

The Properties of the Metal Hydride electrodes prepared by Silicon Sealant (Si-sealant를 이용하여 제조한 금속수소화물 전극의 특성)

  • CHOI, Jeon;PARK, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.4 no.2
    • /
    • pp.23-28
    • /
    • 1993
  • The $(LM)Ni_{4.5}Co_{0.1}Mn_{0.2}Al_{0.2}$ hydrogen storage alloy powders were conducted 25wt% electroless copper plating in an acidic bath. For the preparation of a hydride electrodes, the copper coated alloy powder was mixed with Si-sealant(organosilicon) and compacted with $6t/cm^2$ at room temperature. The electrode characteristics were examined through electrochemical measurements in a half cell. As a sealant contents increased, the initial discharge capacity of si-sealant bounded electrode was lower and the activation rate in high current density was slower. For extended cycles, however, the electrodes with the Si-sealant were superior in a high rate discharge and useful range of temperature over the sealant-free electrode. In addition, the cycle life increased with increasing the amount of Si-sealant added. It can be suggested from the results that the Si-sealant as a binder could be applied to the preparation of the metal hydride electrode.

  • PDF

Laser Welding of AZ31B-H24 Mg Alloy with AZ61 Filler Wire (AZ61 필러 와이어를 첨가한 AZ31B-H24 마그네슘 합금의 레이저 용접)

  • Ryu, Chung-Sun;Bang, Kook-Soo;Lee, Mok-Young;Chang, Woong-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.54-58
    • /
    • 2008
  • Laser welding with AZ61 filler wire was carried out to improve formability though reduction of porosity and formation of under fill bead. Optimum welding condition and mechanical properties of butt joint for $400{\times}500{\times}1.3mm$ magnesium sheets were studied. Optimal welding conditions of laser power, welding speed, and defocusing length are 1000W, 3m/min, and 2mm, respectively. Results of tensile test indicated that both tensile strength and elongation of specimens welded with filler wire were improved at room temperature because of reduction of porosity and under-filled bead formation in addition to the precipitation hardening and microstructure refinement by Al-Mn and Mg-Al-Zn precipitates. At elevated temperature of $200{\sim}350^{\circ}C$, fracture location of tensile specimen was shifted from weld metal to base metal, indicating less softening of weld metal than base metal.

Effect of Aluminum, Manganese, and Zirconium on the Content of Nickel in Molten Magnesium (마그네슘용탕의 니켈 함량에 미치는 알루미늄, 망간 및 지르코늄의 영향)

  • Jeong, Dae-Yeong;Moon, Young-Hoon;Moon, Byoung-Gi;Park, Won-Wook;Sohn, Keun-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Variations of nickel contents and microstructures in molten magnesium alloys on the addition of aluminum, zirconium, and manganese have been investigated. Specimens were prepared by melting under $SF_6$ and $CO_2$ atmosphere and casting into a disc of 29 mm diameter with 7~10 mm thickness from the melt acquired at the top of crucible. Before casting, the molten metal was stirred for 3 minutes after each addition of alloying elements and maintained for 30 minutes for settling down. Results showed that zirconium did not significantly affect the content of nickel while aluminum remarkably reduced it by forming $Al_3Ni_2$ phase. When manganese are added to Mg-1wt%Ni alloy along with aluminum, both elements remarkably reduced the content of nickel. The addition of 1.5 wt% manganese to Mg-1wt%Ni alloy containing aluminum further reduced the content of nickel by more than 30%, during which an additional intermetallic phase $Al_{10}Mn_3Ni$ was precipitated in the molten magnesium.

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Selective Surface Oxidation of 590MPa TRIP Steel and Its Effect on Hot-Dip Galvanizability (590 MPa TRIP강의 선택적 표면산화 거동과 표면 산화막이 도금특성에 미치는 영향)

  • Kim, Seong-Hwan;Im, Jun-Mo;Huh, Joo-Youl;Lee, Suk-Kyu;Park, Rho-Bum;Kim, Jong-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2011
  • In order to gain better understanding of the selective surface oxidation and its influence on the galvanizability of a transformation-induced plasticity (TRIP) assisted steel containing 1.5 wt.% Si and 1.6 wt.% Mn, a model experiment has been carried out by depositing Si and Mn (each with a nominal thickness of 10 nm) in either monolayers or bilayers on a low-alloy interstitial-free (IF) steel sheet. After intercritical annealing at $800^{\circ}C$ in a $N_2$ ambient with a dew point of $-40^{\circ}C$, the surface scale formed on 590 MPa TRIP steel exhibited a microstructure similar to that of the scale formed on the Mn/Si bilayer-coated IF steel, consisting of $Mn_{2}SiO_{4}$ particles embedded in an amorphous $SiO_{2}$ film. The present study results indicated that, during the intercritical annealing process of 590 MPa TRIP steel, surface segregation of Si occurs first to form an amorphous $SiO_{2}$ film, which in turn accelerates the out-diffusion of Mn to form more stable Mn-Si oxide particles on the steel surface. During hot-dip galvanizing, particulate $Fe_{3}O_{4}$, MnO, and Si-Mn oxides were reduced more readily by Al in a Zn bath than the amorphous $SiO_{2}$ film. Therefore, in order to improve the galvanizability of 590 TRIP steel, it is most desirable to minimize the surface segregation of Si during the intercritical annealing process.

Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution (알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Lee, Man-Sig;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys (용체화처리한 AZ91-X%Sn 마그네슘 합금의 부식 저항성 변화)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.

Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting (고압 다이캐스팅용 알루미늄 합금의 열전도성 및 주조성에 미치는 첨가원소의 영향)

  • Kim, Cheol-Woo;Kim, Young-Chan;Kim, Jung-Han;Cho, Jae-Ik;Oh, Min-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.805-812
    • /
    • 2018
  • High pressure die casting is one of the precision casting methods. It is highly productivity and suitable for manufacturing components with complex shapes and accurate dimensions. Recently, there has been increasing demand for efficient heat dissipation components, to control the heat generated by devices, which directly affects the efficiency and life of the product. Die cast aluminum alloys with high thermal conductivity are especially needed for this application. In this study, the influence of elements added to the die cast aluminum alloy on its thermal conductivity was evaluated. The results showed that Mn remarkably deteriorated the thermal conductivity of the aluminum alloy. When Cu content was increased, the tensile strength of cast aluminum alloy increased, showing 1 wt% of Cu ensured the minimum mechanical properties of the cast aluminum. As Si content increased, the flow length of the alloy proportionally increased. The flow length of aluminum alloy containing 2 wt% Si was about 85% of that of the ALDC12 alloy. A heat dissipation component was successfully fabricated using an optimized composition of Al-1 wt%Cu-0.6 wt%Fe-2 wt%Si die casting alloy without surface cracks, which were turned out as intergranular cracking originated from the solidification contraction of the alloy with Si composition lower than 2 wt%.