• Title/Summary/Keyword: Al-MCM-41

Search Result 17, Processing Time 0.018 seconds

Adsorbate Interactions of Cu(II) Ion-Exchanged into Mesoporous Aluminosilicate MCM-41 Analyzed by Electron Spin Resonance and Electron Spin Echo Modulation

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.109-126
    • /
    • 1999
  • The location of Cu(II) exchanged into measoporous aluminosilicate MCM-41(AlMCM-41) material and its interaction with various adsorbate molecules were investigated by electron spin resonance and electron spin echo modulation spectroscopies. Cu(II) is fully coordinated to adsorbates in a wide open mesopore of AlMCM-41 for the formation of favorable complexes. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules as evidenced by an isotropic room temperature ESR signal. This species is located in a cylindrical MCM-41 channel and rotates rapidly at room temperature. Evacuation at room temperature removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to oxygens in an MCM-41 channel wall. Dehydration at 450$^{\circ}C$ produces one Cu(II) species located on the internal wall of a channel, which is easily accessible to adsorbates. Adsorption of adsorbate molecules such as water, methanol, ammonia, pyridine, aniline, acetonitrile, benzene, and ethylene on a dehydrated Cu-AlMCM-41 material causes changes in the ESR spectrum of Cu(II), indicating the complex formation with these adsorbates. Cu(II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM analysis like upon water adsorption. Cu(II) also forms a square planar complex containing four molecules of N-containing adsorbates such as ammonia, pyridine and aniline based on resolved nitrogen superhyperfine interaction and their ESR parameters. However, Cu(II) forms a complex with six-molecules of acetonitrile based on ESR parameters. Only one molecule of benzene or ethylene is coordinated to Cu(II).

  • PDF

Immobilization of Metallocene inside the Aminosilane-Functionalized Nanopore of SBA-15 and MCM-41 and Its Ethylene Polymerization (아미노실란 기능화된 MCM-41과 SBA-15 세공 내 메탈로센 담지 및 에틸렌 중합)

  • Celedonio, Jhulimar;Lee, Jeong Suk;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.396-400
    • /
    • 2014
  • The pore surface of mesoporous materials, SBA-15 and MCM-41 were functionalized with organosilanes, 3-aminopropyltrimethoxysilane (1NS) and N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS) via grafting method. $(n-BuCp)_2ZrCl_2$ and methylaluminoxane (MAO) were impregnated on the surface-functionalized mesoporous materials for the application to ethylene polymerization. In the case of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ supported Zr and Al contents decreased as grafted 2NS content increased. However, in the case of MCM-41/2NS/$(n-BuCp)_2ZrCl_2$ supported Al content decreased, but Zr content increased as grafted 2NS content increased. The polymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ increased as the amount of grafted 2NS increased. Increase in the amount of grafted 2NS should caused decrease in pore volume and diameter. Consequently, it decreased the amount of supported metallocene and MAO in general. However, the smaller pore-sized MCM-41 could have lower supported MAO content due to its large molecular size in case that MCM-41 was surface-functionalized with 2NS. Therefore, the supported metallocene content could increase and its polymerization activity was higher than that of SBA-15.

Polymerization of Polyethylene Using Bimodal TiCl4/MgCl2/SBA-15/MCM-41

  • Moonyakmoon, Mattanawadee;Klinsrisuk, Sujitra;Poonsawat, Choosak
    • Particle and aerosol research
    • /
    • v.11 no.3
    • /
    • pp.87-92
    • /
    • 2015
  • MCM-41 (Mobil Composition of Matter) and SBA-15 (Santa Barbara Amorphous) were used as a supported catalyst for ethylene polymerization due to their combination of large surface area and wide range of pore size distribution. The morphology of supports was used to control the morphology of the resulting polymer. Different molar ratios of Al/Ti were used for ethylene polymerization at $60^{\circ}C$ under atmospheric pressure. The effect of different mass ratios of MCM-41/SBA-15 and 1-hexene concentration on polymerization activity and polymer properties was investigated. The catalytic activity and the crystallinity reached the highest value at Al/Ti of 480. Upon incorporation of MCM-41 and SBA-15 into $MgCl_2/TiCl_4$ catalyst, the molecular weight and crystallinity of polyethylene were enhanced. The obtained polyethylene showed melting temperature between 130 and $135^{\circ}C$. The polyethylene with replication structure of support and bimodal MWD was expected.

Carbon Dioxide Reforming of Methane over a Ni/KIT-1 Catalyst (Ni/KIT-1 촉매를 이용한 메탄의 이산화탄소 개질반응 연구)

  • Ryn, Seong-Yun;Ahn, Wha-Seung;Park, Sang-Eon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1070-1078
    • /
    • 1998
  • Thermodynamic analysis on carbon dioxide reforming of methane was performed using a computer program which can handle condensed species in the products, and the reforming experiments were conducted over $Al_2O_3$, $La_2O_3$, ZSM-5, MCM-41, KIT-1 supported nickel catalysts, and a commercial ICI 46-1. It was estabished that a system which consists of $CH_4$, $CO_2$, CO, $H_2$, $H_2O$, and C is appropriate for theoretical equilibrium calculations and addition of water vapor or oxygen was found to diminish the contribution of carbon dioxide in reforming. Silicate molecular sieve-supported catalysts such as Ni/ZSM-5, Ni/MCM-41, Ni/KIT-1 were effective for high $CH_4$ and $CO_2$ conversions as well as for high CO yield. Coke formation was suppressed when CaO was added as a promoter. Ni/Ca/KIT-1 which contains 10% Ni with 3% Ca showed conversion approaching equilibrium levels above $650^{\circ}C$ and maintained constant activity over 20 h. Despite increased space velocity, relatively high conversion and CO yield were observed.

  • PDF

Synthesis of Alumina-Surfactant Mesophase with $Al_{l3}$-Keggin Cation ($Al_{l3}$ 거대 양이온으로부터 알루미나-계면활성제 중간상의 합성)

  • 김윤섭;고형신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.653-655
    • /
    • 2000
  • Alumina-surfactant mesostructures have been synthesized with the $Al_{13}$-Keggin cation prepared by Al(N $O_3$)$_3$.9$H_2O$ solution with NaOH solution in the presence of a non-ionic surfactant at room temperature. The synthesized samples had the hexagonal structure similar to MCM-41 type materials. These samples have been characterized by X-ray diffraction and thermal analysis(TG). The samples prepared from OH/Al ratio 1.5 and 2.0 were well-crystalline mesostructures, but the sample from OH/Al ratio 2.5 was not. Also, The d$_{100}$ value decreased slightly from 38 to 36 according to the OH/Al mole ratio. These results could be explained that Keggin ion depended on the OH/Al molar ratio and pHpH

  • PDF

Dehydration of D-Xylose into Furfural Using Propylsulfonic Acid Modified Mesoporous Silica (황산 표면개질 메조다공 실리카를 이용한 푸르푸랄 제조에 관한 연구)

  • Kim, Eun-Gyu;Kim, Saet-Byul;Park, Eun-Duck;Kim, Sang-Wook
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.95-102
    • /
    • 2010
  • Sulfonic acid (-SO3H) functionalized mesoporous silica containing HMS, SBA 15(S15), MCM 41(M41) were synthesized by post-synthesis and co-condensation method. Their catalytic performance is tested by dehydration reaction of D-xylose to furfural. As a result, good conversion and selectivity was obtained using water as an environmentally friendly solvent. Additionally, increased amounts of sulfuric acid in catalysts resulted in improved conversion of D-xylose. All of the acid-functionalized mesoporous silica showed higher selectivity than other solid acids such as ${\gamma}-Al_{2}O_{3}$ and zeolite.

Synthesis of 2,3-Dihydrobenzofuran Derivatives over HMCM-41 Catalysts (HMCM-41 촉매에서 2,3-Dihydrobenzofuran 유도체의 합성)

  • Kim, Hyung Jin;Seo, Gon;Kim, Jung-Nyun;Choi, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.662-667
    • /
    • 2005
  • 2,3-Dihydrobenzofuran derivatives, important intermediates of medicines and agricultural chemicals, were prepared from aryl methallyl ethers over MCM-41 mesoporous material catalysts. Two mesoporous materials with Si/Al mole ratios of 40 and 50 were prepared to investigate the effect of acid site concentration on their catalytic activities. Aryl methallyl ethers with various substituents on their benzene rings were used to investigate the effect of electron density on benzene ring on the conversion of the ethers and the yield of 2,3-dihydorbenzofuran derivatives. The catalyst with a high acid site concentration showed high conversions, but it is difficult to correlate the yield of the derivatives with the acid site concentration. The increase in the electron density of the benzene ring by introducing electron-donating groups accelerated Claisen rearrangement reaction, resulting in the enhanced yield of the derivatives. On the other hand, the decrease in the electron density by introducing electron-attracting groups accelerated the cracking reaction of aryl methallyl ether by acid catalysts, producing phenol derivatives rather than 2,3-dihydrobenzofuran derivatives.