• 제목/요약/키워드: Al-Fe coating

검색결과 114건 처리시간 0.028초

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • 제3권4호
    • /
    • pp.161-165
    • /
    • 2004
  • Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.

수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석 (Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production)

  • 이유진;안건형;박만호;이창우;최상현;정주용;조성종;이근재;안효진
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

Ni 본드코팅이 Al 기지에 고온 용사 코팅된 Fe 코팅층의 접합특성에 미치는 영향 (Effect of Ni Bond Coat on Adhesive Properties of Fe Coating Thermal Sprayed on Al Substrate)

  • 권의표;김대영;이종권
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.542-548
    • /
    • 2016
  • The influence of NiCrAlY bond coating on the adhesion properties of an Fe thermal coating sprayed on an Al substrate was investigated. By applying a bond coat, an adhesion strength of 21MPa was obtained, which was higher than the 15.5MPa strength of the coating without the bond coat. Formation of cracks at the interface of the bond coat and the Al substrate was suppressed by applying the bond coat. Microstructural analysis of the coating interface using EBSD and TEM indicated that the dominant bonding mechanism was mechanical interlocking. Mechanical interlocking without crack defects in the coating interface may improve the adhesion strength of the coating. In conclusion, the use of an NiCrAlY bond coat is an effective method of improving the adhesion properties of thermal sprayed Fe coatings on Al substrates.

상향류식 연속 역세 여과를 이용한 양어장 순환수 재리용 II. 여과사의 표면처리에 의한 세균 및 바이러스 처리율 검토 (Recycling Water Treatment of Aquaculture by Using DynaSand Filter II. Effect of Coating on Removal of Bacteria and Virus in Sand Columns)

  • 박종호;조규석;황규덕;김이오
    • 한국양식학회지
    • /
    • 제16권2호
    • /
    • pp.76-83
    • /
    • 2003
  • 본 연구에서는 상향류식 연속 역세여과 연구를 통하여 양어장 순환수 처리 후 박테리아 및 바이러스 등을 효과적으로 처리하는 기술 개발과 여과사에 금속염을 코팅시켜 생물막의 형성을 도모하는 연구를 수행하였다. 여과사를 코팅한 경우 중성 pH에서 zeta potential 양(+)이 됨을 알 수 있었고 zeta potential이 양(+)에 근접할수록 column test에서 바이러스 제거효율이 증가함을 알 수 있었다. 따라서 여과사를 금속염으로 코팅을 하는 경우가 안한 경우 보다 음이온을 띤 부유물 제거에 탁월한 효능이 있음을 보여주었다. pH에 따른 여과재료의 흡착율에서 Al coating과 Al+Fe coating은 반응 시간 30분까지 효과적으로 흡착이 일어나는 것을 볼수 있었고 이 후의 반응시간에서 파과 곡선형태를 보여주었다. 회분식 형태로 운영한 여과재료를 이용한 탈착실험에서 Non, Al, Fe및 Al+Fe coating모두에서 pH 9.95에서 용출(leaching)되는 농도가 가장 높았으며 각각의 농도는 7.47, 4.80, 20.89 및 7.23 mg/L로 각각 나타났다. 이번 연구에서 Al coating의 경우 pH에 따른 영향은 거의 나타나지 않았으며, pH가 증가함에 따라 약간 감소하는 것을 알수 있었고 Fe coating에서는 pH의 영항이 없었으며, Al+Fe coating에서는 pH가 증가함에 따라 탁도도 역시 일정하게 증가하는 것으로 나타났다.

NdFeB 영구자석에의 Al/Al2O3 다층막 코팅 및 부식 특성 (Preparation of Al/Al2O3 Multilayer Coatings on NdFeB Permanent Magnet and their Corrosion Characteristics)

  • 정재인;양지훈
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.86-94
    • /
    • 2009
  • Various types of multilayer coatings including Al/$Al_2O_3$ structure have been prepared on Nd-Fe-B permanent magnet to modify the morphology of the coating and to enhance the corrosion resistance of the magnet. Magnetron sputtering has been employed to make the multilayer coatings. $Al_2O_3$sputtering conditions were optimized in reactive sputtering by varying the deposition parameters. The formation of $Al_2O_3$ film was confirmed from the binding energy shift measured by electron spectroscopy for chemical analysis. 3 types of coating structures were designed and prepared by magnetron sputtering. The coating structures consist of (1) single Al coating, (2) modified coatings having oxide or plasma treated layer in the middle of coating structure, and (3) Al/$Al_2O_3$ multilayer coatings. Surface and cross-sectional morphologies showed that Al/$Al_2O_3$ multilayer grew as a layered structure, and that very compact Zone 3 like structure were formed. X-ray diffraction peak showed that the crystal orientations of multilayer coatings were similar to that of the bulk powder pattern. Hardness increased drastically when the Al thickness was around 1im in the Al/$Al_2O_3$ multilayer. From the salt spray test and pressure cooker test, it has been shown that the multilayer coatings showed good corrosion resistance compared to Al single or modified layer coatings.

수명을 향상시키기 위해 Al 메탈 코팅과 양극산화처리된 Steel 도가니의 파괴 거동 (Fracture Behavior of Fe Crucible in Molten Aluminum Coated with Al and Anodized Al)

  • 차태민;신병현;황명원;김도형;정원섭
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.34-39
    • /
    • 2018
  • Steel crucible used for molten Al has a problem of very limited lifetime because of the interaction between Fe and molten Al. This study was performed to improve the lifetime of steel crucible for molten Al by coating metallic Al and by further anodizing treatment to form thick and uniform anodic oxide films. The lifetime of the steel crucible was improved slightly by Al coating from 30 to 40 hours by metallic Al coating and largely to 120 hours by coating the surface with anodic oxide film. The improved lifetime was attributed to blocking of the reaction between Fe and molten Al with the help of anodic oxide layer with more than 20 um thickness on the crucible surface. The failure of the steel crucible arises from the formation of intermetallic compounds and pores at the steel/Al interface.

연속 용융아연도금 공정에서 Fe용출 및 드로스 발생에 미치는 도금조건의 영향 (Influence of Coating Conditions on Fe Dissolution and Dross Formation in Continuous Hot-dip Galvanizing Process)

  • 전선호;김상헌
    • 한국표면공학회지
    • /
    • 제36권5호
    • /
    • pp.364-372
    • /
    • 2003
  • In continuous galvanizing process, dissolution of iron into molten zinc results in a fairly great amount of dross. In order to decrease dross, the amount of dissolved iron of strip in molten zinc was investigated in the range of 0∼0.22%Al content, 440∼$470^{\circ}C$ strip temperature and 3∼60 sec dipping time. Uniform Fe-Al-Zn inhibition layer was formed in the coating layer/strip interface not only in the grain boundary but also in the grain of substrate with the increase of Al content in the zinc pot, while the amount of iron dissolution was decreased. Inhibition layer was unstable as the dipping time and strip temperature increased and the amount of iron dissolution increased.

내황화성 비정질 Nb-Ni-Al-Si 코팅층의 개발 (Development of Sulfidation Resistant Amorphous Nb-Ni-Al-Si Coating Layer)

  • 이동복;김종성;백종현
    • 한국표면공학회지
    • /
    • 제30권4호
    • /
    • pp.248-254
    • /
    • 1997
  • The sulfidation behavior of a sputter-deposited amorphous coating of 69.0%Nb-16.9Ni-11.9%Al-2.2%Si (at.%) has been investigated as a funtion of temperature.(973-1173K) in pure sulfur pressure of 0.01atm. The sulfidation kinetics of the casting obyed the parabolic rate low over the whole temperature ranges studied. The stlfidation rate increased with the temperature, as expected. The sulfide scale, the composition of which was $Al_2S_3,\;NbS_2,\;Ni_{3-x}S_2\;and\;FeCrS_4$, formed on the amorphous coating was primarily bilayered. Both the outer fastgrowing non-protective 4Al_2S_3$scale and the inner slowly-growing protective $NbS_2$,/TEX> scale and the inner slowly-growing protective $NbS_2$ scale had some Fe and Cr dissolution, which evidently came from the base substrate alloy of stainless steel type 304. Belows the coating, Kirkendall void formation was noticed. Nevertheless, a dramatic improvement of sulfidation resistance was achieved by sputter-depositing Nb-2 Ni-Al-Si layer on the stainless steel 304.

  • PDF

Al과 Al-1% Si 용융조에서 용융 도금된 탄소강의 경도, 산화 및 미세조직의 특성 (Charactrerization of microstructure, hardness and oxidation behavior of carbon steels hot dipped in Al and Al-1% Si molten baths)

  • 황연상;원성빈;;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.109-110
    • /
    • 2013
  • Medium carbon steel was aluminized by hot dipping into molten Al or Al-1%Si baths. After hot-dipping in these baths, a thin Al-rich topcoat and a thick alloy layer rich in $Al_5Fe_2$ formed on the surface. A small a mount of FeAl and $Al_3Fe$ was incorporated in the alloy layer. Silicon from the Al-1%Si bath was uniformly distributed throughout the entire coating. The hot dipping increased the microhardness of the steel by about 8 times. Heating at $700-1000^{\circ}C$ however decreased the microhardness through interdiffusion between the coating and the substrate. The oxidation at $700-1000^{\circ}C$ in air formed a thin protective ${\alpha}-Al_2O_3$ layer, which provided good oxidation resistance. Silicon was oxidized to amorphous silica, exhibiting a glassy oxide surface.

  • PDF