• Title/Summary/Keyword: Al-Fe

Search Result 2,729, Processing Time 0.029 seconds

Supergene Chloritization and Vermiculitization in Hornblende Gneiss, the Cheongyang Area, Korea (청양지역 각섬석 편마암의 녹니석화 및 질석화 작용 연구)

  • Song, Yungoo;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.233-244
    • /
    • 1991
  • A biotite that substantially altered to chlorite and vermiculite in hornblende gneiss from Cheonyang, Korea, has been investigated with electron microprobe analysis. The data show the general variational trends of Ti and K-leaching with increased weathering. However, the chloritization is characterized by Si- conservative reaction and relatively dramatic increase of Al-for-(Fe+Mg) octahedral substitution, whereas the vermiculitization is characterized by total Mg-conservative and Ca-enriching exchange reaction. In the initiating stage the vermiculitization proceeded in a continuous decrease of the Al-for-Si tetrahedral substitution and an increase of the Al-for-(Fe+Mg) octahedral substitution, supporting the currently accepted weathering process. But it differs in the late stage, in which AI(IV) and Fe increase significantly. Recalculations of the structural formular for vermiculite on the basis of several assumptions indicate that the oxidation of Fe is necessary for vermiculite to form the reasonable strutural formular. The relative timing of the oxidation of Fe probably occurs in the late stage, supported by the substantial increase of the Al-for-Si tetrahedral substitution.

  • PDF

Effects of Several Factors on the Characteristics of Fe-Al Alloy Preform Manufactured by Reactive Sintering Process (반응소결법에 의해 제조된 Fe-Al합금 예비성형체의 특성에 미치는 제인자의 영향)

  • Joo, Hyung-Gon;Park, Sung-Hyuk;Joo, Sung-Min;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 1997
  • The main aim of the present study is to investigate the effects of several processing parameters on the characteristics of Fe-Al alloy preform manufactured by reactive sintering process. The processing parameters include preform composition of 25, 40, 50, 60 and 75at.%Al, compacting pressure of 10, 20 and $30kg/cm^2$, and mean Al particle size of 29, 66 and $187{\mu}m$. Mean Fe particle size was $39{\mu}m$. The density of preform processed under same compacting pressure was not affected by changing Al composition. The preform with Al compositions of 25, 40, 50 and 60at.% Al swelled after reactive sintering process, thus having lower density than the green compacts. The preform with Al compositions of 75at.%Al, however, shrinked after reactive sintering process, thus having higher density than the green compacts. Ignition temperature increased with increasing compacting pressure, and increased with increasing Al composition at the fixed compacting pressure. And adiabatic temperature decreased with increasing compacting pressure at the fixed Al composition, and increased with increasing Al composition at the fixed compacting pressure. The size of compound particles increased with increasing Al composition. Especially, The size of compound particles increased largely in the case of 75at.%Al. It was observed that 50at.%Al preform have three dimentional network structure having a homogeneous and fine decreasing Al particle size.

  • PDF

Sulfuric Acid Decomposition on CuFeAlOx Catalysts (CuFeAlOx 촉매상에서의 황산분해 반응)

  • Jeon, Dong-Kun;Lee, Kwan-Young;Gong, Gyeong-Taek;Yoo, Kye-Sang;Kim, Hong-Gon;Jung, Kwang-Deog;Lee, Byung-Gwon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • CuFeOx/$Al_2O_3$ catalysts are developed for the use in sulfuric acid decomposition which is a subcycle in thermochemical iodine-sulfur cycle to split water into hydrogen and oxygen. Both Cu and Fe components are co-precipitated with Al component to enhance distribution of active components. Developed catalysts are improved in the capability of sulfuric acid decomposition and endurance under highly acidic environment compared to commercial catalysts such as Pt/$Al_2O_3$ and $2CuO{\cdot}Cr_2O_3$. Developed CuFeAlOx catalysts exhibited higher sulfuric acid decomposition ability than $2CuO{\cdot}Cr_2O_3$ and longer endurance trends than Pt/$Al_2O_3$ maintaining comparable performance, respectively.

A Study on Distribution of Mössbauer Spectroscopy in Al Doped Garnet (Al을 치환한 Garnet의 Mössbauer분포 함수 연구)

  • Min, Byoung-Ki;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Al$\^$3+/ substituted garnet Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ (x=0.0, 0.25, 0.5, 0.75, 1.0) was fabricated by sol-gel method. The crystallographic and magnetic properties of Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), and vibrating samples magnetometer (VSM). The crystal structure of Y$_3$Fe$\_$5/O$\_$12/ is found to be a cubic with the lattice constant a$\_$0/= 12.381$\pm$0.005 $\AA$. The lattice constants a$\_$0/ decreases linearly from 12.381 to 12.304 A as the Al concentration (x) increases from x=0.0 to 1.0. Mossbauer spectra of measured at Y$_3$Fe$\_$5-x/A1$\_$x/O$\_$12/ various absorber temperatures of 13 to 600 K. Mossbauer spectrum for x = 0.0 is consist of well resolved two sets of six line patterns. While with increasing Al concentration outer sextet patters, which is originating from octahedral sites, broadens widely. These phenomena are interpreted in terms of random probability distributions of Fe$\^$3+/ and Al$\^$3+/ in tetrahedral site.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys (Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향)

  • Park, Sung Hyun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.507-511
    • /
    • 2017
  • An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Soft Magnetic Properties of CoFeAlO Thin Films for Ultrahigh Frequency Applications (고주파용 CoFeAlO계 박막의 자기적 특성)

  • Kim, Hyeon-Bin;Yun, Dae-Sik;Ha, N.-D.;Kim, Jong-O
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.17-20
    • /
    • 2005
  • The influence of $O_2$ partial pressure on saturation mgnetization, coercivity, anisotropy field and effective permeability (over 1GHz) of as-deposited Co-Fe-Al-O thin films, which were fabricated by RF magnetron reactive sputtering method, were investigated. The $Co_{69.9}Fe_{20.5}A_{14.4O_{5.2}$ thin film fabricated at $O_2$ partial pressure of 4% exhibits the best magnetic softness with saturation magnetization 4${$pi}$Ms of 18.1 kG, coercivity of 0.82 Oe, anisotropy field ($H_k$) of Oe, and effective permeability (${\mu}_{eff}$) about 1,024 above 1 GHz. the electrical resistivity of Co-Fe-Al-O thin films were increased with increasing $O_2$ partial pressure, the electrical resistivity of $Co_{69.9}Fe_{20.5}A_{14.4O_{5.2}$ thin film with the best soft magnetic properties was 560.7 ${\mu}{\Omega}$am. Therefore, It is assumed that the good soft magnetic properties of $Co_{69.9}Fe_{20.5}A_{14.4O_{5.2}$ thin film results from high electrical resistivity and large anisotropy field.

Distribution Behavior of Solute Element in Al-Mg-Zn Alloy Continuous Cast Billet During Homogenization Treatment (Al-Mg-Zn계 알루미늄 합금 연주 빌렛 균질화처리과정 중 용질원소 거동변화)

  • Myoung-Gyun Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.286-293
    • /
    • 2023
  • In this study, we investigated the microstructural evolution of Al-Mg-Zn aluminum alloy billet during homogenization treatment using OM, SEM, EDS and DSC. There were numerous phases found, such as; AlMgZn, AlMgFe, and AlMgZnSi phases, in the grain of the cast billet. After 6 hours homogenization treatment, Zn was mostly dissolved, whereas, Mg and Si were only partly dissolved. Accordingly, only AlMgFe and AlMgSi remained. After 18 hours, all of the leftover Mg and Si were dissolved, leaving only AlMgFe, which was also found after 24 hours. The results of the alloy design program, JMatPro showed that Mg dissloved more rapidly than Zn. According to the homogenization kinetic equation, Mg and Zn are completely dissolved within 1.9 and 3.5 hours, respectively.