• Title/Summary/Keyword: Al-Cu

Search Result 2,068, Processing Time 0.029 seconds

Improvement of electromigration characteristics in using Ai interlayer (Cu 배선에 Al층간 물질 첨가에 의한 EM특성 개선)

  • 이정환;박병남;최시영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.403-410
    • /
    • 2001
  • Acceleration in integration density and speed performance of ULSI circuits require miniaturization of CMOS and interconnections as well as higher current density capabilities for transistors. A leading candidate to substitute Al-alloy is Cu, which has lower resistivity and higher melting point. So we can expect much higher electromigration resistance. In this paper, we are going to explain the major features of EM for MOCVD Cu according to variant conditions. We compared the life time and activation energy of MOCVD Cu with those of I-beam Cu and AA in the same conditions. The electromigration experiments were performed with Cu/Al/TiN multilayer. Experimental results shows that the deposition rate and electromigration characteristics of Cu thin film were improved by the Al interlayer.

  • PDF

Variation of Morphology of Solid Particles and Microstructure in Al-Si, Al-Cu and Mg-Al Alloys During Isothermal Heat-Treatment at Semi-Solid Temperatures (반고상 온도구역에서 등온유지한 Al-Si, Al-Cu 및 Mg-Al합금의 고상형상 및 조직의 변화)

  • Jung, Woon-Jae;Kim, Ki-Tae;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.556-564
    • /
    • 1996
  • Variation of shape and size of solid particles and solute redistribution in Mg-9wt.%Al, AI-4.5wt.% Cu, and AI-7wt.%Si alloys were investigated when they were heated to semi-solid temperatures and held without stirring. In the case of Mg-9wt.% Al and Al-4.5wt.%Cu alloys, the polygonal shaped solid particles were agglomerated with non-uniform distribution, and there were no disappearance of the solid/solid boundary until the end of melting. But in the case of an Al-7wt.%Si alloys, two or three spherical shaped particles were coalesced or separated individually, and the coalesced particles had no solid/solid interface on the contrary to the prevous case. The maximum size of solid particles during isothermal heating at high temperature was smaller than that at lower temperature, but the time required to reach the maximum size at high temperature was shorter than that at lower temperature. The concentrations of main solute atom whose distribution coefficient is lower than 1, decreased in the primary solid particles as the liquid fraction increased, and the gradient of solute concentration was steeper in Mg-9wt.%Al alloy and Al-4.5wt.%Cu alloy than that of Al-7wt.%Si alloy.

  • PDF

The Direct Bonding of Copper to Alumina by $Cu-Cu_2$O Eutectic Reaction (Cu-C$u_2$O의 공정반응에 의한 구리와 알루미나의 직접접합)

  • Yu, Hwan-Seong;Lee, Im-Yeol
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.241-247
    • /
    • 1992
  • The direct bonding of Cu to $Al_2O_3$, employing the $Cu-Cu_2$O eutectic skin melt, is investigated. The bonding force and interface structure of samples prepared by oxidation at $1015^{\circ}C$ in $1.5{\times}10^{-1}$torr followed by bonding at 107$5^{\circ}C$ under $10_{-3}$ torr vacuum have been studied using peeling test, SEM, EDS and XRD. It has been found that the optimal strength is obtained for 3 minutes of oxidation while the adhesion force is decreased with oxidation shorter or longer than 3 minutes. The rupture occured at alumina-eutectic interface. Fractured surface of $Al_2O_3$covered with $Cu_2$O nodules pulled out of the Cu indicates that bonding strength is governed by $Cu-Cu_2$O interface and not by $Cu_2$O-A$l_2O_3$interface. The bonding force is slightly increased with bonding time and the reaction phases of CuA$l_2O_4$and $CuAlO_2$are formed at interface during the bonding.

  • PDF

Microstructure of Rheocompocast Al-Cu-Ti/SiCp composite (Rheocompocasting한 Al-Cu-Ti/SiCp 복합재료의 조직)

  • Yoon, Yeo-Chang;Choe, Jung-Chul;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.368-376
    • /
    • 1995
  • An Al-composite material was fabricated with using the rheocompocasting process and the microstructure of the Al-Cu/SiCp composite material was investigated depending on the stirring times and the amount of Ti additions. The distribution of SiC dispersion shows the good result at the stirring time of 30 min. The degree of microdistribution of the $Al_2Cu$ and SiCp is improved when the amount of Ti addition is increased. At the compositon of 0.3%Ti, the primary solid is the compound of $Al_3Ti$ and no exist of the SiCp and $Al_2Cu$ phase around the primary $Al_3Ti$. In the process of compositization, SiCp is found at the primary and final solid parts and is found at the final solid part after remelting. $Al_2Cu$ and SiCp are distributed around and outside of dendrite or independently after remelting, which is different from the process of compositization.

  • PDF

The Study on the Corrosion Characteristics of Al-Alloy Shell for Cooler (알루미늄합금 원통냉각기의 부식 특성에 관한 연구)

  • 임우조;김성진;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.152-157
    • /
    • 2003
  • Most Recently, with rapid development in marine industries such as marine structures and ship, there occurs much interest in the study of corrosion characteristics which play an important role in design of cooling water system like heat-exchanger. Especially, as operating environment of fresh cooling water system in vessels is acidified, this system is seriously corroded. In this study, to study on the corrosion characteristics of Al-alloy shell for cooler, the electrochemical polarization test of materials for the marine fresh water cooler such as Al-alloy, Cu and naval brass was carried out in fresh water. And thus the polarization resistance and anodic polarization behavior of Al-alloy, Cu and naval brass are investigated. Also, galvanic corrosion characteristics of Al-alloy coupled with Cu and naval brass is considered. The main results obtained are as follows ; (1) The current density of corrosion is high in order of Al-alloy > naval brass > Cu (2) As anodic potential increases, the corrosion resistance of naval brass is better than that of Cu. (3) The galvanic corrosion of Al-alloy coupled with Cu and naval brass is activated than corrosion of Al-alloy.

Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals (저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구)

  • Kim, Min Sang;Park, Chun Woong;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.

Decomposition of Low-toxic Propellant by Cu-La-Al/honeycomb Catalysts (Cu-La-Al/honeycomb 촉매를 이용한 저독성 추진제 분해)

  • Kim, Munjeong;Yoo, Dalsan;Lee, Jeongsub;Joen, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.296-303
    • /
    • 2021
  • The objective of this study is to investigate the applicability of a Cu-supported honeycomb catalyst as a catalyst for decomposition of a low toxic liquid propellant based on ammonium dinitramide (ADN). A mixture of copper, lanthanum, and alumina was supported on the honeycomb support by wash coating to prepare a Cu-La-Al/honeycomb catalyst. We elucidated that the effect of metal loading on the physicochemical properties of Cu-La-Al/honeycomb catalyst and catalytic performance in decomposition of the ADN-based liquid propellant. As the number of wash coatings increased, the amount of active metal Cu was increased to 4.1 wt%. The BET surface area of the Cu-La-Al/honeycomb catalyst was in the range of 3.1~4.1 ㎡/g. The micropores were hardly present in Cu-La-Al/honeycomb catalysts, however, the mesopores and macropores were well developed. The Cu (2.7 wt%)-La-Al/honeycomb catalyst exhibited the highest activity in the decomposition of the ADN-based liquid propellant, which is attributed to the largest surface area, the largest pore volume, and the well-developed mesopores and macropores.

Etching of an Al Solid by SiCl$_4$ Molecules at 600 eV

  • Seung Chul Park;Chul Hee Cho;Chang Hwan Rhee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • We present a theoretical investigation on the etching of an Al solid by $SiCl_4$ molecules at a collision energy of 600 eV. The classical trajectory method is employed to calculate Al etching yields, degree of anisotropy, kinetic energy distribution and angular distribution. The calculated results are compared with the reaction of a Cu solid by $SiCl_4$. The major products of the reaction are aluminum monomers and dimers together with considerable quantities of multimers. The Al solid shows better etching yield and better anisotropy than the Cu solid. This is consistent with the problem in the CMOS micro-fabrication of the CuAl and CuAlSi alloys. The relevance of these calculations for the dry etching of CuAl alloy is discussed.

Synthesis and Microstructure of Porous Al2O3 with Nano-Sized Cu Dispersions (나노크기 Cu 분산입자를 갖는 Al2O3 다공체의 제조 및 미세조직 특성)

  • Yoo, Ho-Suk;Kim, An-Gi;Hyun, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • Porous $Al_2O_3$ dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous $Al_2O_3$, camphene was used as the sublimable vehicle. Camphene slurries with $Al_2O_3$ content of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at $1400^{\circ}C$ for 1 h. Cu particles were dispersed in porous $Al_2O_3$ by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about $150{\mu}m$; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated $Al_2O_3$ particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous $Al_2O_3$ with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.

Low Temperature CO Oxidation over CuO Catalyst Supported on Al-Ce Oxide Support (Al-Ce 산화물에 담지된 CuO 촉매상에서 저온 CO산화반응)

  • Park, Jung-Hyun;Yun, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.156-162
    • /
    • 2017
  • CuO(x)/0.3Al-0.7Ce catalysts with different CuO loadings (x = 2~20 wt%) were prepared by impregnation method and investigated the effects of CuO loadings on the low temperature CO oxidation. Of the used catalysts, the CuO(10)/0.3Al-0.7Ce catalyst showed the highest catalytic performance in the absence or presence of water vapor. In the presence of water vapor, the catalytic performance was drastically decreased, with a temperature of 50% CO conversion ($T_{50%}$) shifted to higher temperature by $50^{\circ}C$ compared to the those in dry conditions because of the competitive adsorption of water vapor on the active sites. The copper metal surface area calculated from $N_2O$-titration analysis and the oxygen capacity from CO-pulse experiments were increased with the CuO loadings and showed a maximum at 10 wt%CuO/0.3Al-0.7Ce catalyst. These trends are in good agreement with the tendency of $T_{50%}$ of the catalysts. From these characteristic aspects, it could be deduced that the catalytic performance was closely related to the oxygen capacity and the copper metallic surface area.