• Title/Summary/Keyword: Al-Ce mixed oxide

Search Result 6, Processing Time 0.019 seconds

CO Oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce) (서로 다른 몰비의 Al/(Al+Ce)를 가진 Al-Ce 혼합산화물에 담지된 Pt 촉매 상에서의 일산화탄소 산화반응)

  • Park, Jung-Hyun;Cho, Kyung-Ho;Kim, Yun-Jung;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.166-174
    • /
    • 2011
  • The xAl-yCe oxide catalysts with different mol ratios of Al/(Al+Ce) were prepared by a co-precipitation method and Pt supported on xAl-yCe oxide catalysts were synthesized by an incipient wetness impregnation method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $H_2$/CO-temperature programmed reduction ($H_2$/CO-TPR) to correlate with catalytic activities in co oxidation. Among the catalysts studied here, Pt/1Al-9Ce oxide catalyst showed the highest activity in dry and wet reaction conditions and the catalytic activity showed a typical volcano-shape curve with respect to Al/(Al+Ce) mol ratio. When the presence of 5% water vapor in the feed, the temperature of $T_{50%}$ was shifted ca. $30^{\circ}C$ to lower temperature region than that in dry condition. From CO-TPR, the desorption peak of $CO_2$ on Pt/1Al-9Ce oxide catalyst showed the highest value and well correlated the catalytic performance. It indicates that the Pt/1Al-9Ce oxide catalyst has a large amount of active sites which can be adsorbed by co and easy to supplies the needed oxygen. In addition, the amount of pentacoordinated $Al^{3+}$ sites obtained through $^{27}Al$ NMR analysis is well correlated the catalytic performance.

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO (졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용)

  • Hwang, Jae-Young;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.883-891
    • /
    • 2017
  • For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts (층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향)

  • Yang, Ki-Seon;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.

Experimental and Kinetic Studies of Esterification of Glycerol Using Combustion Synthesized SO42-/CeO2-Al2O3

  • Veluturla, Sravanthi;Narula, Archna;Rao, D. Subba;Indraja., S;Kulkarni, Rajeswari. M.
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.592-599
    • /
    • 2018
  • An increase in the global production of biodiesel has resulted in the newfound significance of its byproduct, glycerol. The synthesis of acetins is an economical avenue to enhance the value of glycerol derived from biodiesel. WE developed an eco-friendly process for the synthesis of fuel additives from glycerol using a mixed oxide $SO{_4}^{2-}/CeO_2-Al_2O_3$ as catalyst. The $CeO_2-Al_2O_3$ mixed oxide was synthesized by the combustion method and then sulfated. The characterization of the catalyst was by means of XRD, BET, FTIR, and SEM. The influence of temperature, mole ratio and catalyst loading on yield and selectivity of the acetins was studied for the esterification of glycerol. The reaction rate constants ($k_1$, $k_2$ and $k_3$) were estimated using optimization method in MAT lab, and the activation energies ($E_1$, $E_2$ and $E_3$) were determined by the Arrhenius equation. Furthermore, a kinetic model was developed.

Removal of S $O_{2}$ and NO by Dry Sorbent(II) - Efficiency of Cu-Ce and Cu-7Al - (건식법에 의한 이산화황과 산화질소의 제거(II) - Cu-Ce 및 Cu-7Al의 효율 -)

  • 신창섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 1993
  • Flue gas control systems for small-scale combustors must be designed to provide highly effective removal of three criteria pollutants (S $O_{2}$, N $O_{x}$ and particulate matter), and must be safe, reliable and small. These requirements make dry, regenerative clean-up process particularly attractive and this paper describes a new concept for integrated pollutant control : a filter comprised of layered, gas permeable membranes that act as an S $O_{2}$ sorbant, a N $O_{x}$ reduction catalyst and a particulate filter. A mixed metal oxide sorbent, Cu-Ce was used as a sorbent/catalyst and the activity was compared with Cu-7Al. The S $O_{2}$ removal eficiency of Cu-Ce was increased with temperature increase up to 500$^{\circ}$C and the catalytic activity for NO was higher than that of Cu-7Al. By the sulfation of Cu-Ce, the reduction activity was increased at the temperature higher than 350$^{\circ}$C. The regeneration of Cu-Ce was very fast and some amount of elemental sulfar was found.

  • PDF

A Study on Sintering Inhibition of La0.8Sr0.2MnO3- Cathode Material for Cathode-Supported Fuel Cells

  • Ahmed, Bilal;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.494-499
    • /
    • 2016
  • In this work, the effects of different sintering inhibitors added to $La_{0.8}Sr_{0.2}MnO_{3-{\partial}}$ (LSM) were studied to obtain an optimum cathode material for cathode-supported type of Solid oxide fuel cell (SOFC) in terms of phase stability, mechanical strength, electric conductivity and porosity. Four different sintering inhibitors of $Al_2O_3$, $CeO_2$, NiO and gadolinium doped ceria (GDC) were mixed with LSM powder, sintered at $1300^{\circ}C$ and then they were evaluated. The phase stability, sintering behavior, electrical conductivity, mechanical strength and microstructure were evaluated in order to assess the performance of the mixture powder as cathode support material. It has been found that the addition of $Al_2O_3$ undesirably decreased the electrical conductivity of LSM; other sintering inhibitors, however, showed sufficient levels of electrical conductivity. GDC and NiO addition showed a promising increase in mechanical strength of the LSM material, which is one of the basic requirements in cathode-supported designs of fuel cells. However, NiO showed a high reactivity with LSM during high temperature ($1300^{\circ}C$) sintering. So, this study concluded that GDC is a potential candidate for use as a sintering inhibitor for high temperature sintering of cathode materials.