• Title/Summary/Keyword: Al-6.3Zn-2.4Mg alloy

Search Result 18, Processing Time 0.025 seconds

Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy (안정화 열처리에 의한 Al-4.8Zn-1.3Mg계 합금 압출재 특성 평가)

  • Lee, Chang-Yeon
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.818-823
    • /
    • 2018
  • In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization($460^{\circ}C$, $4h+510^{\circ}C$, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal $Mg_2Zn$, $Al_5Cu$, $Al_{13}Cu$ formed between dendrities. After homogenization, MgZn, $Al_4Cu$, $Al_{13}Cu$ phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging($100^{\circ}C$, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.

Effect of Al Addition on the Precipitation Behavior of a Binary Mg-Zn Alloy

  • Kim, Ye-Lim;Tezuka, Hiroyasu;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.111-117
    • /
    • 2012
  • The effect of Al addition on the precipitation behavior of a binary Mg-Zn alloy was investigated based on the changes in the morphology, distribution and element concentration of precipitates formed during aging treatment. The as-cast Mg-6.0 mass%Zn (Mg-6Zn) and Mg-6.0 mass%Zn-3.0 mass%Al (Al-added) were homogenized at 613 K for 48 h and at 673 K for 12 h; they were then solid solution treated at 673 K for 0.5 h and 1 h, respectively. The Mg-6Zn and Al-added alloys were aged at 403 K and 433 K. The peak hardness of the Al-added alloy was higher than that of the Mg-6Zn alloy at each aging temperature. Rod-like, plate-like, blocky, and lath-like precipitates were observed in the Al-added alloy aged at 433 K for 230.4 ks, although the rod-like and plate-like precipitates were observed in the TEM microstructure of the Mg-6Zn alloy aged at 433 K for 360 ks. Moreover, the precipitates in the Al-added alloy were refined and densely distributed compared with those in the Mg-6Zn alloy. The Cliff-Lorimer plots obtained by the EDS analysis of the rod-like ${\beta}_1^'$ and plate-like ${\beta}_2^'$ phases in the Al-added alloy peak aged at 433 K for 230.4 ks were examined. It was confirmed that the ${\beta}_2^'$ phases had higher concentration of solute Al atom than was present in the ${\beta}_1^'$ phases, indicating that the properties of precipitates can be changed by Al addition.

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Mechanical Properties and Castabilities of Al-12Mg-5.5Zn-xSi Alloys

  • Kim, Jeong-Min;Sung, Ki-Dug;Jun, Joong-Hwan;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.340-346
    • /
    • 2004
  • The plan for obtaining a good combination of strength and castability appeared feasible and the following observations were made. 1. In Al-12Mg-6.6Zn-xSi alloys, more primary $Mg_2Si$ phase formed with reduced $Al_3Mg_2$ phase, as Si content is necessary for an effective solution heat treatment because the solidus temperature is very low silicon contents. 2. A high tensile strength could be obtained in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributed in the heat-treated Al-12Mg-5.5Zn-5Si alloy attributes to fine $MgZn_2$ particles that precipitated uniformly in the matrix. 3. Al-12Mg-5.5Zn-Si alloys showed excellent casting capabilities such as hot cracking resistance and fluidity compared to the reference commercial alloys. 4. The wear resistance of Al-12Mg-5.5Zn-5Si alloy was superior to that of A7075 alloy, and even higher resistance is expected if the morphology and size of primary $Mg_2Si$ phase is carefully controlled.

A Study on Mechanical Characteristic of Hydrogen Charged Al-6.3Zn-2.4Mg Alloy (Al-6.3Zn-2.4Mg 합금의 수소충전에 따른 기계적 특성 연구)

  • Kim, Dae-Hwan;Choi, Tae-Young;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • In this study, the extruded Al-6.3Zn-2.4Mg alloys were selected among the 7000 series aluminum alloys sensitive to hydrogen environment in order to examine the effects of both the aging conditions and the length of hydrogen charging period on the mechanical properties of the alloy. The specimens were aged for 24hours at $100^{\circ}C$ (under aging (UA)), $120^{\circ}C$ (peak aging (PA)), and $160^{\circ}C$ (over aging (OA)), respectively. Charging tests were performed at RT for 12, 24, 36 hours under potentiostatic conditions (-2000 mV vs (Ag/AgCl)) for 12, 24 and 36 hours in 1M $H_2SO_4$ and 0.1%$NH_4SCN$ solution. The fracture surface was examined by scanning electron microscopy (SEM). X-ray diffraction (XRD) pattern in peak aged sample was obtained before and after hydrogen charging from extruded Al-6.3Zn-2.4Mg alloys. The decreasing rate of tensile strength and elongation is represented in order of over aging < under aging < peak aging, and it is believed that the hydrogen recharge is more sensitive to elongation than tensile strength. The formation of $AlH_3$ in hydrogen charged Al-6.3Zn-2.4Mg alloys has been confirmed by X-ray diffraction studies.

Galvanic Anode Charactristics of Grounding Cell Design for Corrosion Protection of Pipings (배관 방식용 접지전지 설계를 위한 유전양극의 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 1983
  • The galvanic anodes have three kinds of Zn alloy anode, Al alloy anode and Mg alloy anode, which are widely used in cathodic protection for all metal structures in water or under ground. This paper to be used for designing of the grounding cell has reached the following conclusion as the results of an experimental study on the characteristics of such galvanic anodes for corrosion protection of pipings: 1) Zn alloy anode was the best when the specific resistance of the environment was bellow 1000 $\Omega$.cm, and when above 1000 $\Omega$.cm, Mg alloy anode to be used for designing of the grounding cell was the best. 2) Al alloy anode was better than Mg alloy anode for grounding cell when the specific resistance was bellow 500 $\Omega$.cm, but the Al alloy anode in all the environments reduced the characteristics of galvanic anode to the lower grade than those of Zn alloy anode. 3) Each impressed voltage (E) of the anodes at which drainage current density ($\rho$) begins rapidly increasing is quantitatively presented as follows: \circled1 E sub(Zn)=log (4.9465/$\rho$super(0.0639))+11$\times$10 super(-6)$\rho$super(0.8923i) \circled2 E sub(Al)=log (4.9306/$\rho$super(0.0525))+13$\times$10 super(-6)$\rho$super(0.9314i) \circled3 E sub(Mg)= log (3.7086/$\rho$super(0.0988))+181$\times$10 super(-6)$\rho$super(0.5406i) 4) The empirical equations between the drainage current density (i) and impressed environment are modeled as the following type. logi=g+root(n.E+r)(g,n,r; constants)

  • PDF

A study of galvanic characteristics of aluminium alloy anode in the Al-Zn-In-Mg system made of the low purity aluminium ingot (저순도 Al지금을 사용한 Al-Zn-In-Mg계 Al합금 유전양극의 특성에 관한 연구)

  • 김원녕;김기준;김영대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.240-249
    • /
    • 1985
  • This paper presents the results of the galvanic anode's characteristicsin the Al-Zn-In-Mg and Al-Zn-In-Mg system anodes used aluminium ingot of low purity, 99.5% grade. The results of thses performance tests are as follows: 1) Zn, In and Mg are an available elements to improve the performance of Aluminium alloy anodes. 2) When the range of zinc content in the Al-Zn-In-Mg system anode is 2-5% the more zinc content, the more improve the anode performance. 3) Al-Zn-In-Mg system anode requires a long term over 50 days for the performance test. 4) The composition of Al-Zn-In-Mg system anode which shows the most excellent performance is Al-(2-3%) Zn-(0.02%) In-(1.0%) Mg. 5) When the Al-Zn-In-Mg system anode is annealed for an hour in 500 to 550 .deg. C, the anode performance is improved. 6) The lower average potential and the better corrosion pattern in the Al-Zn-Mg, Al-Zn-In and Al-Zn-In-Mg system anodes, the more current efficiency is improved.

  • PDF

The Aging Characteristics of an RS-P/M Al-Zn-Mg- Zr-Mn-Cu Alloy (급속응고 분말법으로 제조한 Al-Zn-Mg-Zr-Mn-Cu합금의 시효특성)

  • 이갑호
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.100-105
    • /
    • 1997
  • In this study the changes of the hardness and microstructures during aging at 120$^{\cire}C$ of an RS-P/M Al-5.6wt%Zn-2.0wt%Mg-1.3wt%Zr-1.0wt%Mn-0.25wt%Cu alloy were studied using a transmission electron microscopy. The hardness increased rapidly at early stage of aging and reached the maximun when the specimen was aged for 24 hr. The many irregular-shaped $Al_4Mn$ and rod-shaped $Al_6Mn$ dispersoids with 0.1-0.4 $\mu$m in length were observed in the as-extruded alloy. The dark particles with 2-3 nm in size were observed in aged specimen for 5hr and those are thought to be G.P.zones or precursor of $\eta'$ precipitates. In aged specimen for 24 hr, the $\eta'$ phases were distributed homogeneously within the matrix and the PFZ with 30-40 nm in width was observed along the grain boundary. With further aging, the width of PFZ increased and $\eta$ phases were also detected within the matrix.

  • PDF

A Study on the Creep Behaviour of Al-Zn-Mg Alloy (Al-Zn-Mg 계 합금의 Creep 거동에 관한 연구)

  • Park, Jong Geon;Choi, Jae Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 1993
  • The static creep mechanism and behaviour of Al-Zn-Mg alloy have been investigated under condition of constant stress tension creep test in the temperature and stress range of $170-260^{\circ}C$ and 5-12.5 $kg/mm^2$ respectively. The experimental result are follows : The stress exponent value for creep was observed to about 7.3-6.43 and the activation energy for creep deformation was 44-41 kcal/mol. Larson-Miller parameter P for the crept specimens under the creep condition was obtained as P = (T + 460) (log $t_r$ + 8.6). Emperical equation for the creep rate was obtained by the computer simulation as follows. $${\varepsilon}\;=\;\exp[(-5.519{\times}10^{-4}{\sigma}+2.33{\times}10^{-2})T-6.98{\sigma}+18.295]{\times}{\sigma}^{-0.0142+10.18}\exp[\frac{(-6{\sigma}+47.8)1000}{RT}]$$ Fracture was dominated by intergranular mechanism over the experimental range.

  • PDF

The Squeeze Casting and Its Structure of Mg-Al-Zn Alloy (Mg-Al-Zn합금에 있어서의 용탕단조와 그 조직)

  • Choi, J.C.;Choi, Y.D.
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.419-425
    • /
    • 1997
  • 용탕단조방법에 의해 제조된 Mg-6Al-xZn(x=0, 1, 2)합금의 기계적 성질에 미치는 시효열처리의 영향을 조사한결과 아래와 같은 결론을 얻었다. (1) 주조조직을 관찰한 결과 미세한 수지상조직을 나타냈으며 초정${\alpha}$, 과포화 ${\alpha}$, ${\beta}$상 등 세가지 상으로 구성되어 있었다. (2) Mg-6Al-xZn합금은 시효경화성을 나타내었으며 Zn의 첨가량이 증가할수록 전시효구간에서 경도값이 높게 나타났다. (3) 시효조직을 관찰한 결과 $200^{\circ}C$의 시효시에는 불연속 석출물이 대부분 차지했으나 $240^{\circ}C$의 시효온도에서는 수지상 경계에서 시작되는 미세분산된 연속석출물이 대부분 이었다. (4) $240^{\circ}C$에서 시효열처리 한 시편은 연속석출물이 석출됨으로서 $200^{\circ}C$에서의 시효열처리된 시편에 비하여 과시효되는 경향이 작았다. (5) T6열처리 후 인장시험 결과 Zn 첨가량에 따라 강도가 증가하였는데 Mg-6Al-2Zn합금의 경우 인장강도는 248.4 MPa을 나타내었으며 Zn양에 따른 연신율의 감소는 나타나지 않았다.

  • PDF