• Title/Summary/Keyword: Al underlayer

Search Result 25, Processing Time 0.034 seconds

Effects of Ti or Ti/TiN Underlayers on the Crystallographic Texture and Sheet Resistance of Aluminum Thin Films (Ti 또는 Ti/TiN underlayer가 Al 박막의 배향성 및 면저항에 미치는 영향)

  • Lee, Won-Jun;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The effects of the type and thickness of underlayers on the crystallographic texture and the sheet resistance of aluminum thin films were studied. Sputtered Ti and Ti/TiN were examined as the underlayer of the aluminum films. The texture and the sheet resistance of the metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For the Ti underlayer, the minimum thickness to obtain excellent texture of aluminum <111> was 10nm, and the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. TiN between Ti and Al could suppress the Al-Ti reaction, while it deteriorated the texture of the aluminum film. For the Ti/TiN underlayer, the minimum Ti thickness to obtain excellent texture of aluminum <111> was 20nm, and the minimum thickness of TiN to function as a diffusion barrier between Ti and Al was 20nm.

  • PDF

Ti Prepared by ionized physical vapor deposition (I-PVD) and TiN prepared by metal-organic chemical vapor deposition(MOCVD) as underlayers of aluminum TiN (Al 박막의 underlayer로서의 Ionized Physical Vapor Deposition (I-PVD) Ti 또는 I-PVD Ti/Metal-Organic Chemical Vapor Deposition TiN)

  • 이원준;나사균
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.394-399
    • /
    • 2000
  • The effects of the type and thickness of underlayer on the crystallographic texture and the sheet resistance of aluminum thin film were studied. Ti and Ti/TiN were examined as the underlayer of aluminum. Ti and TiN were prepared by ionized physical vapor deposition (I-PVD) metalorganic chemical vapor deposition (MOCVD), respectively. The texture and the sheet resistance of metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For I-PVD Ti underlayer, the excellent texture of aluminum <111> was obtained even at top of 5 nm of Ti. However, the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. MOCVD TiN between Ti and Al could suppress the Al-Ti reaction without severe degradation of aluminum <111> texture. Excellent texture of aluminum was obtained for the MOCVD TiN thinner than 4 nm.

  • PDF

A study on the electromigration phenomena in Al-1%Si thin film interconnections with Ti underlayers (Ti underlayer를 갖는 AI-1%Si 박막배선에서의 일렉트로마이그레이션 현상에 관한 연구)

  • 유희영;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • In this paper, the lifetime dependence as a function of the line length of Al-1%Si thin film interconnections due to electromigration in semiconductor devices was studied. Al-1%Si thin film interconnections with a pattern of straight type were formed by using a standard photolithography process. The test patterns manufactured have line lengths in the range of 100 to 1600 $mu extrm{m}$. Al-1%Si thin film interconnections with Ti underlayers showed longer lifetime than those without Ti underlayers. Ti underlayers are believed to improve electromigration resistance resulting in a longer lifetime in Al-1%Si thin film interconnections. The dependence of lifetime on the line length in Al-1%Si/Ti thin film interconnections shows a saturation tendency near 800 $\mu\textrm{m}$ line length.

  • PDF

Effect of an AI underlayer on the Growth of Carbon Nanotubes and Their Field Emission Characteristics (알루미늄 하부층이 탄소나노튜브의 성장 및 전계방출 특성에 미치는 영향)

  • Lee, Seung-Hwan;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.162-172
    • /
    • 2008
  • We studied the effect of an Al underlayer on the growth of carbon nanotubes (CNTs) and their field emission characteristics, First of all, CNTs were grown on the Invar catalyst layers with different thickness of 1 to 10 nm, showing that the CNT length was saturated for the catalyst 5 nm or thicker. The CNTs grown on the 5-nm-thick catalyst were ${\sim}10{\mu}m$ long and ${\sim}30nm$ in diameter. Second, an Al underlayer was applied between the catalyst layer and the Ti diffusion barrier to reduce the diameters of CNTs for better field emission properties by forming spherical Al oxide particles on which smaller catalyst nanoparticles would occur. The optimal thickness of an Al underlayer underneath the 5-nm-thick catalyst was ${\sim}15nm$, producing the CNTs with the length of ${\sim}15{\mu}m$ and the diameter of ${\sim}15nm$. The field emission measurements, following the tape activation, showed that the thinner and longer CNTs gave rise to better field emission performance with the lower turn-on and threshold electric fields.

EFFECT OF Al UNDERLAYER ON THE MICROSTRUCTURES OF CoCrTa/Cr FILMS

  • Chang, H.S.;Shin, K.H.;Lee, T.D.;Park, J.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.614-617
    • /
    • 1995
  • Thin CoCrTa/Cr films were deposited on glass substrates at $280^{\circ}C$ with or without Al underlayer. The coercivity of CoCrTa increased considerably by introducing an Al underlayer. The grain size of Cr thin film deposited on Al underlayer became smaller than that of Cr thin film deposited on glass substrate. The grain size of CoCrTa thin film was determined by Cr grain size. The cause of the coercivity increase seems to be associated with the refinement and uniform distribution of CoCrTa grains.

  • PDF

Effect of an Al underlayer on the Growth of mm-long Thin Multi-walled Carbon Nanotubes in Water-Assisted Thermal CVD

  • Choi, In-Sung;Jeon, Hong-Jun;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.26-26
    • /
    • 2009
  • Vertically aligned arrays of mm-long multi-walled carbon nanotubes (MWCNTs) on Si substrates have been synthesized by water-assisted thermal chemical vapor deposition (CVD). The growth of CNTs was investigated by changing the experimental parameters such as growth temperature, growth time, gas composition, annealing time, catalyst thickness, and Al underlayer thickness. The 0.5-nm-thick Fe served as catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. We grew CNTs by adding a little amount of water vapor to enhance the activity and the lifetime of the catalyst. Al was very good at producing the nm-size catalyst particles by preventing "Ostwald ripening". The Al underlayer was varied over the range of 15~40 nm in thickness. The optimum conditions for the synthesis parameters were as follows: pressure of 95 torr, growth temperature of $815^{\circ}C$, growth for 30 min, 60 sccm Ar + 60 sccm $H_2$ + 20 sccm $C_2H_2$. The water vapor also had a great effect on the growth of CNTs. CNTs grew 5.03 mm long for 30 min with the water vapor added while CNTs were 1.73 mm long without water vapor at the same condition. As-grown CNTs were characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. High-resolution transmission electron microscopy showed that the as-grown CNTs were of ~3 graphitic walls and ~6.6 nm in diameter.

  • PDF

Underlayer for Coercivity Enhancement of Ti/CoCrPt Thin Films (보자력 향상을 위한 Ti/CoCrPt박막의 하지층)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.94-98
    • /
    • 2002
  • Sputtering conditions and various underlayer such as Al, Cu, Ni, Cr, Ag, Mg, Fe, Co, Pd, Au, Pt, Mo and Hf were investigated for coercivity enhancement of 20 nm Ti/CoCrPt thin films in order to increase the coercivity of the films thinner than 20 nm. Among them, Ag and Mg were effective to increase the coercivity. Particularly 2 nm Ag was very effective to increase the coercivity and nucleation field as well as to reduce ${\alpha}$ value in CoCrPt thin film such that the coercivity of 2 nm Ag/18 nm Ti/10 nm CoCrPt film was 2200 Oe. However, it seemed that other coercivity enhancement mechanism operated in CoCrPt films because Ti (002) preferred texture was not developed with Ag underlayer contrary to a general expectation. And the coercivity and nucleation field were decreased when glass substrate with rougher surface was used.