• Title/Summary/Keyword: Al plate

Search Result 568, Processing Time 0.026 seconds

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Aerodynamic forces on fixed and rotating plates

  • Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.;Richards, P.J.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.127-144
    • /
    • 2010
  • Pressure measurements on static and autorotating flat plates have been recently reported by Lin et al. (2006), Holmes, et al. (2006), and Richards, et al. (2008), amongst others. In general, the variation of the normal force with respect to the angle of attack appears to stall in the mid attack angle range with a large scale separation in the wake. To date however, no surface pressures have been measured on auto-rotating plates that are typical of a certain class of debris. This paper presents the results of an experiment to measure the aerodynamic forces on a flat plate held stationary at different angles to the flow and allowing the plate to auto-rotate. The forces were determined through the measurement of differential pressures on either side of the plate with internally mounted pressure transducers and data logging systems. Results are presented for surface pressure distributions and overall integrated forces and moments on the plates in coefficient form. Computed static force coefficients show the stall effect at the mid range angle of attack and some variation for different Reynolds numbers. Normal forces determined from autorotational experiments are higher than the static values at most pitch angles over a cycle. The resulting moment coefficient does not compare well with current analytical formulations which suggest the existence of a flow mechanism that cannot be completely described through static tests.

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

Removal of Nitrogen and Phosphorus by Activated Sludge Process Combined with Aluminum Corrosion (알루미늄 부식을 적용한 활성슬러지법에서 질소 및 인 제거)

  • Choi Hyung Il;Cheong Kyung Hoon;Park Sang Il;Paik Ke Jin
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.172-178
    • /
    • 2005
  • A laboratory experiment was performed to investigate simultaneous removal of phosphorus and nitrogen from raw sewage by intermittently aerated activated sludge process packed with aluminum and silver plate. Two continuous experimental process, i.e. an intermittently aerated activated sludge process, and an intermittently aerated activated sludge process with an aluminum and silver plate packed into the reactor were compared. The pitting corrosion of aluminum does not affect the performance of the biological treatment. The amounts of Al eluted from aluminum plate 17 mg to 60.6 mg in this experimental conditions, and Al/P mole ratio were from 3.31 to 11.25. The total nitrogen removal efficiency in Run E were $60.6\%$ at the HRT of 12 hours. The effluent $PO_4-P$ concentration as low as $1.0\;mg/\iota$ could have been obtained during the continuous experiment in Run E at HRT of 12 hours.

A Study on the Analysis of Forming Process for Swash-Plate by Using Prepreg (탄소/에폭시 프리프레그를 이용한 스와시 플레이트의 성형공정 해석에 관한 연구)

  • Kim, K.S.;Yoon, H.K.;Shin, J.Y.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • Carbon-epoxy prepreg has been introduced in the forming of the upper and lower swash plates that control the pitch of rotor blade of unmanned helicopter because of its lightweight. Taguchi experimental method has been used by introducing the variables such as arrangement angle, laminated number and forming temperature, in order to obtain the proper forming method by using prepreg satisfying the required strength of the swash plate. In the evaluation of structural safety for the swash plates, three kinds of models are considered by using FE-analysis. In comparison of the hot forged products with Al6061-T6 and the formed products with prepreg, it was found that ultimate tensile strength of the products with prepreg is three times higher than that of the Al6061-T6, and the weight reduction of 68.5g can be achieved by using prepreg swash plates.

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반응고 Al-Zn-Mg 합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Kim, Jeoung-Han;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.405-408
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy..

  • PDF

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반용융 Al-Zn-Mg합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.391-395
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced by using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy.

Single-Step Solid-State Synthesis of CeMgAl11O19:Tb Phosphor

  • Park, Byoung-Kyu;Lee, Seoung-Soo;Kang, Jun-Kun;Byeon, Song-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1467-1471
    • /
    • 2007
  • The green-emitting CeMgAl11O19:Tb (CMAT) phosphor has been prepared at 1200 °C by the simple solid-state reaction using AlF3 as a self-flux. This preparation temperature is much lower than those (1500-1700 °C) for conventional solid-state reaction and spray pyrolysis method. In particular, the complete process to produce high-quality phosphor particles was carried out through the single-step heat treatment of the mixture of corresponding oxide-type metal sources. An addition of AlF3 as a self-flux significantly decreased the crystallization temperature of CMAT with plate-like shape. The particle morphology could be controlled from plate-like to spherical by using H3BO3 as an additional flux. Thus, an optimal morphology and luminescence characteristics of CMAT were achieved when both AlF3 and H3BO3 fluxes were simultaneously used. Compared with conventional solid-state process, which is accompanied by the calcination step(s), and other alternative liquid solution techniques such as sol-gel method and spray pyrolysis, no use of active precursors and liquid media that are harmful to the environment is a distinctive advantage for the industrial purpose.

Automatic Detection and Characterization of Cracked Constituent Particles/Inclusions in Al-Alloys under Uniaxial Tensile Loading (인장하중에 의한 Al 합금내 크랙형성 복합상의 자동검출 및 정량분석)

  • Lee, Soon Gi;Jang, Sung Ho;Kim, Yong Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The detailed quantitative microstructural data on the cracking of coarse constituent particles in 7075 (T651) series wrought Al-alloys have been studied using the utility of a novel digital image processing technique, where the particle cracks are generated due to monotonic loading. The microstructural parameters such as number density, volume fraction, size distribution, first nearest neighbor distribution, and two-point correlation function have been quantitatively characterized using the developed technique and such data are very useful to verify and study the theoretical models for the damage evolution and fracture of Al-alloys. The data suggests useful relationships for damage modeling such as a linear relationship between particle cracking and strain exists for the uniaxial tensile loading condition, where the larger particles crack preferentially.