• 제목/요약/키워드: Al plate

검색결과 569건 처리시간 0.027초

층상 및 섬유상 $Al_2O_3$ 거시복합체의 파괴거동 (Fracture Behavior of $Al_2O_3$ Macro-composites with Layered and Fibrous Structure)

  • 신동우;윤대현;박삼식;김해두
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.758-766
    • /
    • 1997
  • Non-brittle fracture behaviour of the two composite structures made of two different brittle materials was investigated using 3-point bending test. First, the layered and fibrous macro-composites were fabricated using the material easily formed, yet showing a brittle fracture behaviour similar to ceramics. The layered and fibrous Al2O3 /Al2O3 composites with weak interface were also fabricated using plate of 2 mm thickness and rod of 3 mm diameter respectively. Comparison of the mechanical properties between these two structures was performed in the lights of flexural strength and work of fracture for the composites consisting of Al2O3 and simulated materials respectively. The strength ratio of layered structure to the monolith of same volume was 0.6 and the ratio of fibrous one was about 0.2 for the composites made of simulated brittle material. The ratio of the work of fracture of the fibrous to the layered was 0.47. For Al2O3/Al2O3 composites, the strength ratio of layered and fibrous structures to the monolith with same volume were about 0.6 and 0.2 respectively. The ratio of work of fracture of the fibrous to the layered was 0.6. These confirmed that the layered structure was superior to the fibrous one in terms of flexural strength and work of fracture.

  • PDF

2tmm AL-합금재의 겹침이음을 위한 교반용접의 실험적 연구 (An experiment of optimizing tools for Lap joint with 2tmm Aluminum alloy plate using FSW)

  • 장석기;이돈출;김상진;전정일
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.153-160
    • /
    • 2002
  • This paper shows the possibility of performing Lap joint using the friction stir welding and the determination of tool's dimensions for FSW in Milling machine. This research also is reported on obtaining the tensile-shear strength, 9.319 ( kgf/mm$^{2}$) and the energy absorption, 2,682 (kgf-mm) under this experiment. The optimal tool's dimensions and method for Lap joint in 2tmm aluminum alloy plate using FSW is as follows; The diameter of shoulder and pin are 9 $\phi$mm and 3$\phi$mm, the length of pin is 3.6mm. The conditions of shoulder of tool is not pressed into original base metal.

  • PDF

종방향 면내 압출하중을 받는 세장한 선박 이중판의 강도 해석 (Strength Analysis of a Slender Doubler Plate of Ship Structure subjected to the Longitudinal In-plane Compression)

  • 함주혁
    • 대한조선학회논문집
    • /
    • 제37권4호
    • /
    • pp.92-105
    • /
    • 2000
  • 세장한 선박 판부재를 대상으로 가장 중요한 하중인 종방향 면내하중을 작용시키면서 이중판의 폭, 길이, 두께 및 주판(main plate) 부식 영향 등의 각종 파라메타 영향에 따른 이중판의 정적 강도평가를 주판의 접촉효과를 고려한 탄소성 대변형 비선형 시리즈 구조해석을 수행하였으며 이들 해석 결과로부터 각 파라메타의 변화에 따른 강성과 강도 특성을 분석하였다. 또한 이중판의 보강 효과가 최소한 새판으로 치환 보수한 평판 강도 수준으로 설계되어야 하므로 이를 손쉽게 파악할 수 있게 이중판으로 보강된 판부재를 등가 평판 두께로 환산할 수 있는 간이 평가식을 개발하였다. 이 개발식을 이용하여 각 이중판 설계의 영향인자 변화에 따른 등가 평판두께의 증감 정도를 파악하고 이로부터 적어도 새판으로 보수한 평판강도에 달할 수 있게 길이방향 일축 면내 압축하중을 받는 세장한 이중판의 설계지침을 제시하였다. 마지막으로, 개발된 등가 평판 도출식은 고정밀 좌굴강도 평가식과 서로 일정한 상관관계가 있음을 확인하고 관계식을 정립하였다. 이 관계식을 각 경우별로 축적하여 앞으로 일일이 구조해석을 수행하지 않고도 설계된 이중판 강도를 등가 평판두께로 제시할 수 있는 간이 추정식의 개발에 이용될 수 있을 것으로 사료된다.

  • PDF

흑연과 탄소나노튜브 함유 아크릴 복합체 박막의 방열 특성 (Thermal Dissipation Property of Acrylic Composite Films Containing Graphite and Carbon Nanotube)

  • 김준영;강찬형
    • 한국표면공학회지
    • /
    • 제50권3호
    • /
    • pp.198-205
    • /
    • 2017
  • Thermal dissipation was investigated for poly methyl methacrylate (PMMA) composite films containing graphite and multi wall carbon nanotube(CNT) powders as filler materials. After mixing PMMA with fillers, solvent, and dispersant, the pastes were prepared by passing through a three roll mill for three times. The prepared pastes were coated $15{\sim}40{\mu}m$ thick on a side of 0.4 mm thick aluminium alloy plate and dried for 30 min at $150^{\circ}C$ in an oven. The content of fillers in dried films was varied as 1, 2, and 5 weight % maintaining the ratio of graphite and CNT as 1:1. Raman spectra from three different samples exhibited D, G and 2D peaks, as commonly observed in graphite and multi wall CNT. Among those peaks, D peak was prominent, which manifested the presence of defects in carbon materials. Thermal emissivity values of three samples were measured as 0.916, 0.934, and 0.930 with increasing filler content, which were the highest ever reported for the similar composite films. The thermal conductivities of three films were measured as 0.461, 0.523, and $0.852W/m{\cdot}K$, respectively. After placing bare Al plate and film coated samples over an opening of a polystyrene box maintained for 1 h at $92^{\circ}C$, the temperatures inside and outside of the box were measured. Outside temperatures were lower by $5.4^{\circ}C$ in the case of film coated plates than the bare one, and inside temperatures of the former were lower by $3.6^{\circ}C$ than the latter. It can be interpreted that the PMMA composite film coated Al plates dissipate heat quicker than the bare Al plate.

치과용 Ti-6Al-4V 합금 골 고정판 표면에 형성된 나노튜브의 부식거동 (Corrosion Behavior of Nanotube Formed on the Bone Plate of Ti-6Al-4V Alloy for Dental Use)

  • 김원기;이충환;정재헌;최한철
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.25-30
    • /
    • 2010
  • Titanium and titanium alloys are widely used for orthopedic and dental implants for their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. In this study, corrosion behaviors of nanotube formed on the bone plate of Ti-6Al-4V alloy for dental use have been investigated. $TiO_2$ nanotubes were formed on the dental bone plates by anodization in $H_3PO_4$ containing 0.6 wt % NaF solution at $25^{\circ}C$. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Anodization was carried out using a scanning potentiostat (EG&G Co, Model 263A USA), and all experiments were conducted at room temperature. The surface morphology was observed using field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The corrosion behavior of the dental bone plates was examined using potentiodynamic test(potential range of -1500~2000 mV) in a 0.9% NaCl solution by potentiostat (EG&G Co, PARSTAT 2273. USA). The inner diameter of nanotube was about 150~180 nm with wall thickness of about 20 nm. The interspace of nanotube to nanotube was 50 nm. The passive region of the nanotube formed bone plates showed the broad range compared to non-nanotube formed bone plates. The corrosion surface of sample was covered with corrosion products.

다공성 금속판을 이용한 전기적 임팩터의 평가 (Evaluation of an electrical impactor with porous metal substrate)

  • Jeong Jeong-Seon;Gwon Sun-Park;Lee Gyu-Won
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.276-277
    • /
    • 2002
  • One of drawbacks of the inertial impactor measurement is the required long sampling time (Keskinen et al., 1992). In a gravimetric method, an impaction substrate must be weighed and placed on the corresponding collection plate before being assembled. After sampling, the inertial impactor is disassembled and the collection plate is weighted again. The sampling time depends on the sampled particle mass because the collected particle mass must be sufficiently high to be measured by a sensitive microbalance. (omitted)

  • PDF

누적압연접합에 의한 6061 Al 합금의 결정립 미세화와 마멸 특성 연구 (An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Eine Grained 6061 Al Alloy Fabricated by ARB)

  • 이태오;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 2001
  • The ARB (Accumulative Rolling Bonding) Process was applied to a 6061 Al alloy to obtain ultra-fine grains. After 4 ARB cycles at $315^{\circ}C$, original equilibrium large grains were transformed to ultra-fine grains of several hundred nano-meter size with nonequilibrium grain boundaries. At lower number of cycles, microsutcture of highly-tangled dislocation cells were observed. Large grains and coarsened precipitates filled the microstructure of specimens experienced ARB cycles more than 5. Sliding wear tests using a pin-on-disk type wear tester were conducted on the ARB processed 6061 Al alloy plate. Wear rates of the 6061 Al alloy increased with the increase of ARB cycle number as well as the applied load. Worn surfaces and debris, cross-sections of the worn specimen were examined with scanning electron microscopy (SEM) to investigate the wear mechanism of the ultra-fine grained 6061 Al Tensile properties of the 6061 Al alloy were also studied and used to correlate the wear test results with the microstructures, which evolved continuously with the number of ARB cycles.

  • PDF

판재 Al 2024-T3 합금재료에서 나타나는 두께별 피로균열진전지연거동에 관한 ΔK환산법의 정량적분 (A Quantitative Analysis of ΔK Conversion Method for the Retardation Behavior of Fatigue Crack Growth in Varying Thickness of Al 2024-T3 Sheet Alloy)

  • 김승권;이억섭
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1415-1422
    • /
    • 2011
  • 운송기계구조물의 제작에 사용되는 판재 알루미늄 합금재료는 일정한 피로응력조건하에서 두께에 따라 균열진전속도의 차이를 보인다. 이러한 두께효과는 판재 알루미늄합금의 주요한 피로파괴특성 중 하나이다. 본 연구에서는 일정한 피로응력조건하에서 실시한 후판 및 박판 Al 2024-T3 합금재료의 피로 시험을 통하여 두께효과를 파악하고, 이를 형상인자인 두께비, $R_t$ 및 하중인자인 두께별 등가유효응력확대비, $U_{i}^{equ}$에 의한 상호관계식, $U_{i}^{equ}=f(R_t)$로 나타내었다. 그리고 두께효과에 의한 후판 대비 박판시험편의 균열진전 지연거동을 ${\Delta}K$ 환산법을 사용하여 정량적으로 분석하였다. 두께효과의 경향을 정량으로 나타내기 위해 두께감소율(DoT)과 응력확대계수범위, ${\Delta}K$의 감소율(DoS) 등의 값을 구하여 이들 상호관계를 규명하였다.

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.