• Title/Summary/Keyword: Al nanoparticles

Search Result 176, Processing Time 0.031 seconds

Heat transfer enhancement of nanofluids in a pulsating heat pipe for heat dissipation of LED lighting

  • Kim, Hyoung-Tak;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1200-1205
    • /
    • 2014
  • The effect of nanofluids on the heat transfer performance of a pulsating heat pipe has been experimentally investigated. Water-based diamond nanofluid and aluminium oxide ($Al_2O_3$) nanofluid were tested in the concentration range of 0.5-5%. The pulsating heat pipe was constructed using clear Pyrex tubes of 1.85 mm in inner diameter in order to visualize the pulsating action. The total number of turns was eight each for heated and cooled parts. The supply temperatures of heating water and cooling water were fixed at $80^{\circ}C$ and $25^{\circ}C$ respectively. The liquid charging ratio of the nanofluid was 50-70%. The test results showed that the case of 5% concentration of diamond nanofluid showed 18% increase in heat transfer rate compared to pure water. The case of 0.5% concentration of $Al_2O_3$ nanofluid showed 24% increase in heat transfer rate compared to pure water. But the increase of $Al_2O_3$ nanofluid concentration up to 3% did not show further enhancement in heat transfer. It is also observed that the deposited nanoparticles on the tube wall played a major role in enhanced evaporation of working fluid and this could be the reason for the enhancement of heat transfer by a nanofluid, not the enhanced thermal conductivity of the nanofluid.

Electrochemical Properties of LiNi0.8Co0.16Al0.04O2 and Surface Modification with Co3(PO4)2 as Cathode Materials for Lithium Battery

  • Ryu, Kwang-Sun;Lee, Sang-Hyo;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1737-1741
    • /
    • 2008
  • The electrochemical and thermal stability of $LiNi_{0.8}Co_{0.16}Al_{0.04}O_2$ were studied before and after $Co_3(PO_4)_2$ coating. Different to conventional coating material such as $ZrO_2$ or AlPO4, the coating layer was not detected clearly by TEM analysis, indicating that the $Co_3(PO_4)_2$ nanoparticles effectively reacted with surface impurities such as $Li_2CO_3$. The coated sample showed similar capacity at a low C rate condition. However, the rate capability was significantly improved by the coating effect. It is associated with a decrease of impedance after coating because impedance can act as a major barrier for overall cell performances in high C rate cycling. In the DSC profile of the charged sample, exothermic peaks were shifted to high temperatures and heat generation was reduced after coating, indicating the thermal reaction between electrode and electrolyte was sucessfully suppressed by $Co_3(PO_4)_2$ nanoparticle coating.

Anode Material Nanoparticles on Carbon Materials by Electrodeposition for Stability Anodes of Lithium Ion Battery

  • Choe, Su-Jeong;U, Seon-Hwak;Lee, Ji-Hui;Park, Jin-Hwan;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.419-420
    • /
    • 2012
  • Lithium-ion battery (LIB) usually used for valuable electronic devices are extended to applications. High stability negative electrode materials for LIB were investigated using electrodeposition of nanoparticles (NPs) on the nanostructured carbon. NPs with about 70 nm diameters were evenly prepared on the graphitic carbon materials using electrodeposition process at room temperature. It was observed that the NPs were homogeneously embedded into not only external surface but bottom part of the graphitic carbon network. The graphitic carbon material covered with NPs enables facile electron transport owing to the network structure and improves structural collapse during cycling. This facile room temperature process is expected to be applicable to other anode materials such as Sn and Al for the anode of LIB.

  • PDF

Carbon rich fly ash and their nanostructures

  • Salah, Numan;Habib, Sami S.;Khan, Zishan H.;Alshahrie, Ahmed;Memic, Adnan;Al-ghamdi, Attieh A.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.23-31
    • /
    • 2016
  • Carbon rich fly ash was recently reported to have compositions that are ideal for use as a precursor and catalyst for carbon nanotube growth. This fly ash powder is mostly composed of pure carbon, predominantly present as sp2. In this work, the effect of sonication time on the morphology and structural properties of carbon rich fly ash particles is reported. The obtained results show that ultrasound treatment is an effective tool for producing ultrafine particles/fragments with higher porosity, which might be suitable for the adsorption of gasses. Moreover, carbon nanoparticles (CNPs) of this fly ash were produced in parallel using the ball milling technique, and were evaluated as reinforcements for epoxy based composites. These CNPs have almost spherical shapes with particle sizes of around 30 nm. They were found to have strong C=O carbonyl group bonds, which might be generated during the ball milling process. The tensile testing results of a fly ash CNP reinforced epoxy composite showed significant improvements in the mechanical properties, mainly in the stiffness of the polymer. The stiffness value was increased by around 23% of that of neat epoxy. These CNPs with chemically active groups might also be useful for other applications.

Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites

  • Kim, B.R.;Pyo, S.H.;Lemaire, G.;Lee, H.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.173-185
    • /
    • 2011
  • A multiscale modeling scheme that addresses the influence of the nanoparticle size in nanocomposites consisting of nano-sized spherical particles embedded in a polymer matrix is presented. A micromechanics-based constitutive model for nanoparticle-reinforced polymer composites is derived by incorporating the Eshelby tensor considering the interface effects (Duan et al. 2005a) into the ensemble-volume average method (Ju and Chen 1994). A numerical investigation is carried out to validate the proposed micromechanics-based constitutive model, and a parametric study on the interface moduli is conducted to investigate the effect of interface moduli on the overall behavior of the composites. In addition, molecular dynamics (MD) simulations are performed to determine the mechanical properties of the nanoparticles and polymer. Finally, the overall elastic moduli of the nanoparticle-reinforced polymer composites are estimated using the proposed multiscale approach combining the ensemble-volume average method and the MD simulation. The predictive capability of the proposed multiscale approach has been demonstrated through the multiscale numerical simulations.

Study of the ageing of hollow fibers in an industrial module for drinking water production

  • Wang, S.;Wyart, Y.;Perot, J.;Nauleau, F.;Moulin, P.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • In this study, ageing characteristics of an industrial hollow-fiber membrane module were investigated after 50 months of drinking water production. For this purpose, the industrial module was opened to make 18 smaller modules with hollow-fibers taken from different parts of the industrial module. These modules were probed by the use of a magnetic nanoparticle (NP) challenge test based on magnetic susceptibility (K) measurement of permeate. No magnetic susceptibility was detected in permeate when the challenge test was performed on an intact membrane module, indicating the complete retention of nanoparticles by the membrane. The compromised membrane module can be successfully detected by means of magnetic susceptibility measurement in permeate. So, this study clearly demonstrates that ageing of ultrafiltration membranes can be monitored by measuring the magnetic susceptibility of permeate from an ultrafiltration membrane module. These results showed that the hollow fibers in the center zones of the bundle would age faster than those in the outer zones around the bundle. This result is in agreement with numerical simulation (Daurelle et al. 2011).

Selective DNA Adsorption on Layered Double Hydroxide Nanoparticles

  • Kim, Kyoung-Min;Park, Chung-Berm;Choi, Ae-Jin;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2217-2221
    • /
    • 2011
  • We investigated the selective deoxyribonucleic acid (DNA) adsorption on layered double hydroxide (LDH) nanoparticles via studying the interaction between positively charged LDH nanoparticle as adsorbent and negatively charged adsorbates such as methyl orange (MO), fluorescein (FL), and DNA strands. The size controlled LDH $(Mg_{0.78}Al_{0.22}(OH)_2(CO_3)_{0.11}{\cdot}mH_2O)$ was prepared by conventional coprecipitation method, followed by the hydrothermal treatment. According to the adsorption isotherms, the adsorbed amounts of MO and FL were similar, however, that of DNA were much larger. The adsorption behaviors were well fitted to Freundlich adsorption model. The concentration dependent adsorption behavior on LDH surface was described in order to verify the selective DNA separation ability. The result showed that the LDH has advantages in selective adsorption of DNA competing with single molecular anions.

Preparation of C-plane oriented BaFe12O19 film by electrospray deposition of colloidal precursor particles (정전분무 장치를 이용한 C축 일방향 바륨페라이트(BaFe12O19) 박막형성)

  • Lee, Hye Moon;Kim, Yong Jin
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • New process consisting of electrospray and epitaxial crystal growth processes was applied to the preparation of c-plane oriented barium ferrite ($BaFe_{12}O_{19}$) thin film for high density magnetic recording media. Sodium citrate aided process was proper to preparation of amorphous $BaFe_{12}O_{19}$ nanoparticles with geometric mean diameter of 3 nm and geometric standard deviation of 1.1. The electrospray was applicable to the prepare of amorphous $BaFe_{12}O_{19}$ thin film on a substrate, and the film thickness could be controlled by adjusting the electrospray deposition time. The c-plane oriented $BaFe_{12}O_{19}$ thin film was successfully prepared by 3 step annealing process of the $BaFe_{12}O_{19}$ amorphous film on a sapphire($Al_2O_3$) substrate; annealing at $350^{\circ}C$ for 30 min, annealing at $500^{\circ}C$ for 30 min, and annealing at $700^{\circ}C$ for 60 min.

Electrical characteristics of ZnO nanowire - CdTe nanoparticle nano floating gate memory device (ZnO 나노선과 CdTe 나노입자를 이용한 NFGM 소자의 전기적 특성)

  • Yoon, Chang-Joon;Yeom, Dong-Hyuk;Kang, Jeong-Min;Jeong, Dong-Young;Kim, Mi-Hyun;Koh, Eui-Kwan;Koo, Sang-Mo;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.136-137
    • /
    • 2007
  • In this study, a single ZnO nanowire - CdTe nanoparticle nano floating gate memory (NFGM) device is successfully fabricated and characterized their memory effects by comparison of electrical characteristics of ZnO nanowire-based field effect transistor (FET) devices with CdTe nanoparticles embedded in the $Al_2O_3$ gate materials and without the CdTe nanoparticles.

  • PDF

Honeycomb-structured Fe2O3 Catalysts for Low-temperature CO Oxidation (산화철 허니컴 구조 촉매를 활용한 일산화탄소 저온 산화반응 연구)

  • Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.151-154
    • /
    • 2019
  • We report the effective fabrication processes for more practical monolith catalysts consisting of washcoated alumina on a cordierite honeycomb monolith (CHM) and iron oxides nanoparticles in the alumina prepared by a simple dry coating method. It is confirmed that iron oxide nanoparticles were well deposited into the mesopore of washcoated alumina which is formed on the corner wall of honeycomb channel, and the effect of annealing temperature was evaluated for carbon monoxide oxidation catalysts. $Fe_2O_3/{\gamma}-Al_2O_3/CHM$ catalysts annealed at $350^{\circ}C$ exhibited the most enhanced catalytic activity, 100% conversion efficiency at more than $200^{\circ}C$ operating temperature.